188 lines
7.2 KiB
Markdown
188 lines
7.2 KiB
Markdown
# Imaging
|
||
|
||
[![GoDoc](https://godoc.org/github.com/disintegration/imaging?status.svg)](https://godoc.org/github.com/disintegration/imaging)
|
||
[![Build Status](https://travis-ci.org/disintegration/imaging.svg?branch=master)](https://travis-ci.org/disintegration/imaging)
|
||
[![Coverage Status](https://coveralls.io/repos/github/disintegration/imaging/badge.svg?branch=master&service=github)](https://coveralls.io/github/disintegration/imaging?branch=master)
|
||
[![Go Report Card](https://goreportcard.com/badge/github.com/disintegration/imaging)](https://goreportcard.com/report/github.com/disintegration/imaging)
|
||
|
||
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
|
||
|
||
All the image processing functions provided by the package accept any image type that implements `image.Image` interface
|
||
as an input, and return a new image of `*image.NRGBA` type (32bit RGBA colors, not premultiplied by alpha).
|
||
|
||
## Installation
|
||
|
||
go get -u github.com/disintegration/imaging
|
||
|
||
## Documentation
|
||
|
||
http://godoc.org/github.com/disintegration/imaging
|
||
|
||
## Usage examples
|
||
|
||
A few usage examples can be found below. See the documentation for the full list of supported functions.
|
||
|
||
### Image resizing
|
||
|
||
```go
|
||
// Resize srcImage to size = 128x128px using the Lanczos filter.
|
||
dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos)
|
||
|
||
// Resize srcImage to width = 800px preserving the aspect ratio.
|
||
dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos)
|
||
|
||
// Scale down srcImage to fit the 800x600px bounding box.
|
||
dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
|
||
|
||
// Resize and crop the srcImage to fill the 100x100px area.
|
||
dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
|
||
```
|
||
|
||
Imaging supports image resizing using various resampling filters. The most notable ones:
|
||
- `NearestNeighbor` - Fastest resampling filter, no antialiasing.
|
||
- `Box` - Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.
|
||
- `Linear` - Bilinear filter, smooth and reasonably fast.
|
||
- `MitchellNetravali` - А smooth bicubic filter.
|
||
- `CatmullRom` - A sharp bicubic filter.
|
||
- `Gaussian` - Blurring filter that uses gaussian function, useful for noise removal.
|
||
- `Lanczos` - High-quality resampling filter for photographic images yielding sharp results, slower than cubic filters.
|
||
|
||
The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
|
||
|
||
**Resampling filters comparison**
|
||
|
||
Original image:
|
||
|
||
![srcImage](testdata/branches.png)
|
||
|
||
The same image resized from 600x400px to 150x100px using different resampling filters.
|
||
From faster (lower quality) to slower (higher quality):
|
||
|
||
Filter | Resize result
|
||
--------------------------|---------------------------------------------
|
||
`imaging.NearestNeighbor` | ![dstImage](testdata/out_resize_nearest.png)
|
||
`imaging.Linear` | ![dstImage](testdata/out_resize_linear.png)
|
||
`imaging.CatmullRom` | ![dstImage](testdata/out_resize_catrom.png)
|
||
`imaging.Lanczos` | ![dstImage](testdata/out_resize_lanczos.png)
|
||
|
||
|
||
### Gaussian Blur
|
||
|
||
```go
|
||
dstImage := imaging.Blur(srcImage, 0.5)
|
||
```
|
||
|
||
Sigma parameter allows to control the strength of the blurring effect.
|
||
|
||
Original image | Sigma = 0.5 | Sigma = 1.5
|
||
-----------------------------------|----------------------------------------|---------------------------------------
|
||
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_blur_0.5.png) | ![dstImage](testdata/out_blur_1.5.png)
|
||
|
||
### Sharpening
|
||
|
||
```go
|
||
dstImage := imaging.Sharpen(srcImage, 0.5)
|
||
```
|
||
|
||
`Sharpen` uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
|
||
|
||
Original image | Sigma = 0.5 | Sigma = 1.5
|
||
-----------------------------------|-------------------------------------------|------------------------------------------
|
||
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_sharpen_0.5.png) | ![dstImage](testdata/out_sharpen_1.5.png)
|
||
|
||
### Gamma correction
|
||
|
||
```go
|
||
dstImage := imaging.AdjustGamma(srcImage, 0.75)
|
||
```
|
||
|
||
Original image | Gamma = 0.75 | Gamma = 1.25
|
||
-----------------------------------|------------------------------------------|-----------------------------------------
|
||
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_gamma_0.75.png) | ![dstImage](testdata/out_gamma_1.25.png)
|
||
|
||
### Contrast adjustment
|
||
|
||
```go
|
||
dstImage := imaging.AdjustContrast(srcImage, 20)
|
||
```
|
||
|
||
Original image | Contrast = 15 | Contrast = -15
|
||
-----------------------------------|--------------------------------------------|-------------------------------------------
|
||
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_contrast_p15.png) | ![dstImage](testdata/out_contrast_m15.png)
|
||
|
||
### Brightness adjustment
|
||
|
||
```go
|
||
dstImage := imaging.AdjustBrightness(srcImage, 20)
|
||
```
|
||
|
||
Original image | Brightness = 10 | Brightness = -10
|
||
-----------------------------------|----------------------------------------------|---------------------------------------------
|
||
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_brightness_p10.png) | ![dstImage](testdata/out_brightness_m10.png)
|
||
|
||
## Example code
|
||
|
||
```go
|
||
package main
|
||
|
||
import (
|
||
"image"
|
||
"image/color"
|
||
"log"
|
||
|
||
"github.com/disintegration/imaging"
|
||
)
|
||
|
||
func main() {
|
||
// Open a test image.
|
||
src, err := imaging.Open("testdata/flowers.png")
|
||
if err != nil {
|
||
log.Fatalf("failed to open image: %v", err)
|
||
}
|
||
|
||
// Crop the original image to 300x300px size using the center anchor.
|
||
src = imaging.CropAnchor(src, 300, 300, imaging.Center)
|
||
|
||
// Resize the cropped image to width = 200px preserving the aspect ratio.
|
||
src = imaging.Resize(src, 200, 0, imaging.Lanczos)
|
||
|
||
// Create a blurred version of the image.
|
||
img1 := imaging.Blur(src, 5)
|
||
|
||
// Create a grayscale version of the image with higher contrast and sharpness.
|
||
img2 := imaging.Grayscale(src)
|
||
img2 = imaging.AdjustContrast(img2, 20)
|
||
img2 = imaging.Sharpen(img2, 2)
|
||
|
||
// Create an inverted version of the image.
|
||
img3 := imaging.Invert(src)
|
||
|
||
// Create an embossed version of the image using a convolution filter.
|
||
img4 := imaging.Convolve3x3(
|
||
src,
|
||
[9]float64{
|
||
-1, -1, 0,
|
||
-1, 1, 1,
|
||
0, 1, 1,
|
||
},
|
||
nil,
|
||
)
|
||
|
||
// Create a new image and paste the four produced images into it.
|
||
dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0})
|
||
dst = imaging.Paste(dst, img1, image.Pt(0, 0))
|
||
dst = imaging.Paste(dst, img2, image.Pt(0, 200))
|
||
dst = imaging.Paste(dst, img3, image.Pt(200, 0))
|
||
dst = imaging.Paste(dst, img4, image.Pt(200, 200))
|
||
|
||
// Save the resulting image as JPEG.
|
||
err = imaging.Save(dst, "testdata/out_example.jpg")
|
||
if err != nil {
|
||
log.Fatalf("failed to save image: %v", err)
|
||
}
|
||
}
|
||
```
|
||
|
||
Output:
|
||
|
||
![dstImage](testdata/out_example.jpg) |