more step and sensitivity improvements following Schweitzer et al. 1997)

This commit is contained in:
Alexander Bocken 2023-05-11 16:45:20 +02:00
parent 044aab26ca
commit e45d33bf8d
Signed by: Alexander
GPG Key ID: 1D237BE83F9B05E8

View File

@ -13,66 +13,99 @@ from mesa.space import Coordinate
class RandomWalkerAnt(Agent):
def __init__(self, unique_id, model, look_for_chemical=None,
energy_0=1, chemical_drop_rate_0=1, sensitvity_0=0.1,
energy_0=1,
chemical_drop_rate_0 : dict[str, float]={"A": 80, "B": 80},
sensitivity_0=0.99,
alpha=0.5, drop_chemical=None,
betas : dict[str, float]={"A": 0.0512, "B": 0.0512},
sensitivity_decay_rate=0.01,
sensitivity_max = 1
) -> None:
super().__init__(unique_id=unique_id, model=model)
self._next_pos : None | Coordinate = None
self.prev_pos : None | Coordinate = None
self.look_for_chemical = look_for_chemical
self.drop_chemical = drop_chemical
self.energy : float = energy_0
self.sensitvity : float = sensitvity_0
self.chemical_drop_rate : float = chemical_drop_rate_0 #TODO: check whether needs to be separated into A and B
self.energy = energy_0 #TODO: use
self.sensitivity_0 = sensitivity_0
self.sensitivity = self.sensitivity_0
self.chemical_drop_rate = chemical_drop_rate_0
self.alpha = alpha
self.sensitivity_max = sensitivity_max
self.sensitivity_decay_rate = sensitivity_decay_rate
self.betas = betas
self.threshold : dict[str, float] = {"A": 1, "B": 1}
def sens_adj(self, props) -> npt.NDArray[np.float_] | float:
def sens_adj(self, props, key) -> npt.NDArray[np.float_] | float:
"""
returns the adjusted value of any property dependent on the current
sensitivity.
The idea is to have a nonlinear response, where any opinion below a
threshold (here: self.threshold[key]) is ignored, otherwise it returns
the property
Long-term this function should be adjusted to return the property up
to a upper threshold as well.
returns ^
|
sens_max| __________
| /
| /
q^tr| /
|
0|________
-----------------------> prop
"""
# if props iterable create array, otherwise return single value
try:
iter(props)
except TypeError:
if props > self.sensitvity:
# TODO: nonlinear response
# TODO: proper nonlinear response, not just clamping
if props > self.sensitivity_max:
return self.sensitivity_max
if props > self.threshold[key]:
return props
else:
return 0
arr : list[float] = []
for prop in props:
arr.append(self.sens_adj(prop))
arr.append(self.sens_adj(prop, key))
return np.array(arr)
def step(self):
# TODO: sensitvity decay
def _choose_next_pos(self):
if self.prev_pos is None:
i = np.random.choice(range(6))
self._next_pos = self.neighbors()[i]
return
# Ants dropping A look for food
if self.drop_chemical == "A":
if self.searching_food:
for neighbor in self.front_neighbors:
if self.model.grid.is_food(neighbor):
self.drop_chemical = "B"
self.sensitivity = self.sensitivity_0
self.prev_pos = neighbor
self._next_pos = self.pos
# Ants dropping B look for nest
elif self.drop_chemical == "B":
elif self.searching_nest:
for neighbor in self.front_neighbors:
if self.model.grid.is_nest(neighbor):
self.look_for_chemical = "A" # Is this a correct interpretation?
self.drop_chemical = "A"
self.sensitivity = self.sensitivity_0
#TODO: Do we flip the ant here or reset prev pos?
# For now, flip ant just like at food
self.prev_pos = neighbor
self._next_pos = self.pos
# recruit new ants
for agent_id in self.model.get_unique_ids(self.model.num_new_recruits):
agent = RandomWalkerAnt(unique_id=agent_id, model=self.model, look_for_chemical="B", drop_chemical="A")
agent._next_pos = self.pos
@ -82,8 +115,8 @@ class RandomWalkerAnt(Agent):
# follow positive gradient
if self.look_for_chemical is not None:
front_concentration = [self.model.grid.fields[self.look_for_chemical][cell] for cell in self.front_neighbors ]
front_concentration = self.sens_adj(front_concentration)
current_pos_concentration = self.sens_adj(self.model.grid.fields[self.look_for_chemical][self.pos])
front_concentration = self.sens_adj(front_concentration, self.look_for_chemical)
current_pos_concentration = self.sens_adj(self.model.grid.fields[self.look_for_chemical][self.pos], self.look_for_chemical)
gradient = front_concentration - np.repeat(current_pos_concentration, 3)
index = np.argmax(gradient)
if gradient[index] > 0:
@ -101,10 +134,20 @@ class RandomWalkerAnt(Agent):
random_index = np.random.choice(range(len(other_neighbors)))
self._next_pos = other_neighbors[random_index]
def step(self):
self.sensitivity -= self.sensitivity_decay_rate
self._choose_next_pos()
self._adjust_chemical_drop_rate()
def _adjust_chemical_drop_rate(self):
if(self.drop_chemical is not None):
self.chemical_drop_rate[self.drop_chemical] -= self.chemical_drop_rate[self.drop_chemical] * self.betas[self.drop_chemical]
def drop_chemicals(self) -> None:
# should only be called in advance() as we do not use hidden fields
if self.drop_chemical is not None:
self.model.grid.fields[self.drop_chemical][self.pos] += self.chemical_drop_rate
self.model.grid.fields[self.drop_chemical][self.pos] += self.chemical_drop_rate[self.drop_chemical]
def advance(self) -> None:
self.drop_chemicals()
@ -117,6 +160,14 @@ class RandomWalkerAnt(Agent):
pos = self.pos
return self.model.grid.get_neighborhood(pos, include_center=include_center)
@property
def searching_nest(self) -> bool:
return self.drop_chemical == "B"
@property
def searching_food(self) -> bool:
return self.drop_chemical == "A"
@property
def front_neighbors(self):
"""