Switch to dep

This commit is contained in:
Tulir Asokan
2018-04-22 21:25:06 +03:00
parent bfb5f0dd45
commit 64fa922ec0
324 changed files with 74891 additions and 15 deletions

13
vendor/github.com/disintegration/imaging/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,13 @@
language: go
go:
- "1.7.x"
- "1.8.x"
- "1.9.x"
- "1.10.x"
before_install:
- go get github.com/mattn/goveralls
script:
- go test -v -race -cover
- $GOPATH/bin/goveralls -service=travis-ci

21
vendor/github.com/disintegration/imaging/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2012-2018 Grigory Dryapak
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

188
vendor/github.com/disintegration/imaging/README.md generated vendored Normal file
View File

@ -0,0 +1,188 @@
# Imaging
[![GoDoc](https://godoc.org/github.com/disintegration/imaging?status.svg)](https://godoc.org/github.com/disintegration/imaging)
[![Build Status](https://travis-ci.org/disintegration/imaging.svg?branch=master)](https://travis-ci.org/disintegration/imaging)
[![Coverage Status](https://coveralls.io/repos/github/disintegration/imaging/badge.svg?branch=master&service=github)](https://coveralls.io/github/disintegration/imaging?branch=master)
[![Go Report Card](https://goreportcard.com/badge/github.com/disintegration/imaging)](https://goreportcard.com/report/github.com/disintegration/imaging)
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements `image.Image` interface
as an input, and return a new image of `*image.NRGBA` type (32bit RGBA colors, not premultiplied by alpha).
## Installation
go get -u github.com/disintegration/imaging
## Documentation
http://godoc.org/github.com/disintegration/imaging
## Usage examples
A few usage examples can be found below. See the documentation for the full list of supported functions.
### Image resizing
```go
// Resize srcImage to size = 128x128px using the Lanczos filter.
dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos)
// Resize srcImage to width = 800px preserving the aspect ratio.
dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos)
// Scale down srcImage to fit the 800x600px bounding box.
dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
// Resize and crop the srcImage to fill the 100x100px area.
dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
```
Imaging supports image resizing using various resampling filters. The most notable ones:
- `NearestNeighbor` - Fastest resampling filter, no antialiasing.
- `Box` - Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.
- `Linear` - Bilinear filter, smooth and reasonably fast.
- `MitchellNetravali` - А smooth bicubic filter.
- `CatmullRom` - A sharp bicubic filter.
- `Gaussian` - Blurring filter that uses gaussian function, useful for noise removal.
- `Lanczos` - High-quality resampling filter for photographic images yielding sharp results, slower than cubic filters.
The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
**Resampling filters comparison**
Original image:
![srcImage](testdata/branches.png)
The same image resized from 600x400px to 150x100px using different resampling filters.
From faster (lower quality) to slower (higher quality):
Filter | Resize result
--------------------------|---------------------------------------------
`imaging.NearestNeighbor` | ![dstImage](testdata/out_resize_nearest.png)
`imaging.Linear` | ![dstImage](testdata/out_resize_linear.png)
`imaging.CatmullRom` | ![dstImage](testdata/out_resize_catrom.png)
`imaging.Lanczos` | ![dstImage](testdata/out_resize_lanczos.png)
### Gaussian Blur
```go
dstImage := imaging.Blur(srcImage, 0.5)
```
Sigma parameter allows to control the strength of the blurring effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|----------------------------------------|---------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_blur_0.5.png) | ![dstImage](testdata/out_blur_1.5.png)
### Sharpening
```go
dstImage := imaging.Sharpen(srcImage, 0.5)
```
`Sharpen` uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|-------------------------------------------|------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_sharpen_0.5.png) | ![dstImage](testdata/out_sharpen_1.5.png)
### Gamma correction
```go
dstImage := imaging.AdjustGamma(srcImage, 0.75)
```
Original image | Gamma = 0.75 | Gamma = 1.25
-----------------------------------|------------------------------------------|-----------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_gamma_0.75.png) | ![dstImage](testdata/out_gamma_1.25.png)
### Contrast adjustment
```go
dstImage := imaging.AdjustContrast(srcImage, 20)
```
Original image | Contrast = 15 | Contrast = -15
-----------------------------------|--------------------------------------------|-------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_contrast_p15.png) | ![dstImage](testdata/out_contrast_m15.png)
### Brightness adjustment
```go
dstImage := imaging.AdjustBrightness(srcImage, 20)
```
Original image | Brightness = 10 | Brightness = -10
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_brightness_p10.png) | ![dstImage](testdata/out_brightness_m10.png)
## Example code
```go
package main
import (
"image"
"image/color"
"log"
"github.com/disintegration/imaging"
)
func main() {
// Open a test image.
src, err := imaging.Open("testdata/flowers.png")
if err != nil {
log.Fatalf("failed to open image: %v", err)
}
// Crop the original image to 300x300px size using the center anchor.
src = imaging.CropAnchor(src, 300, 300, imaging.Center)
// Resize the cropped image to width = 200px preserving the aspect ratio.
src = imaging.Resize(src, 200, 0, imaging.Lanczos)
// Create a blurred version of the image.
img1 := imaging.Blur(src, 5)
// Create a grayscale version of the image with higher contrast and sharpness.
img2 := imaging.Grayscale(src)
img2 = imaging.AdjustContrast(img2, 20)
img2 = imaging.Sharpen(img2, 2)
// Create an inverted version of the image.
img3 := imaging.Invert(src)
// Create an embossed version of the image using a convolution filter.
img4 := imaging.Convolve3x3(
src,
[9]float64{
-1, -1, 0,
-1, 1, 1,
0, 1, 1,
},
nil,
)
// Create a new image and paste the four produced images into it.
dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0})
dst = imaging.Paste(dst, img1, image.Pt(0, 0))
dst = imaging.Paste(dst, img2, image.Pt(0, 200))
dst = imaging.Paste(dst, img3, image.Pt(200, 0))
dst = imaging.Paste(dst, img4, image.Pt(200, 200))
// Save the resulting image as JPEG.
err = imaging.Save(dst, "testdata/out_example.jpg")
if err != nil {
log.Fatalf("failed to save image: %v", err)
}
}
```
Output:
![dstImage](testdata/out_example.jpg)

222
vendor/github.com/disintegration/imaging/adjust.go generated vendored Normal file
View File

@ -0,0 +1,222 @@
package imaging
import (
"image"
"image/color"
"math"
)
// Grayscale produces a grayscale version of the image.
func Grayscale(img image.Image) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
parallel(0, src.h, func(ys <-chan int) {
for y := range ys {
i := y * dst.Stride
src.scan(0, y, src.w, y+1, dst.Pix[i:i+src.w*4])
for x := 0; x < src.w; x++ {
r := dst.Pix[i+0]
g := dst.Pix[i+1]
b := dst.Pix[i+2]
f := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
y := uint8(f + 0.5)
dst.Pix[i+0] = y
dst.Pix[i+1] = y
dst.Pix[i+2] = y
i += 4
}
}
})
return dst
}
// Invert produces an inverted (negated) version of the image.
func Invert(img image.Image) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
parallel(0, src.h, func(ys <-chan int) {
for y := range ys {
i := y * dst.Stride
src.scan(0, y, src.w, y+1, dst.Pix[i:i+src.w*4])
for x := 0; x < src.w; x++ {
dst.Pix[i+0] = 255 - dst.Pix[i+0]
dst.Pix[i+1] = 255 - dst.Pix[i+1]
dst.Pix[i+2] = 255 - dst.Pix[i+2]
i += 4
}
}
})
return dst
}
// AdjustContrast changes the contrast of the image using the percentage parameter and returns the adjusted image.
// The percentage must be in range (-100, 100). The percentage = 0 gives the original image.
// The percentage = -100 gives solid gray image.
//
// Examples:
//
// dstImage = imaging.AdjustContrast(srcImage, -10) // decrease image contrast by 10%
// dstImage = imaging.AdjustContrast(srcImage, 20) // increase image contrast by 20%
//
func AdjustContrast(img image.Image, percentage float64) *image.NRGBA {
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
v := (100.0 + percentage) / 100.0
for i := 0; i < 256; i++ {
if 0 <= v && v <= 1 {
lut[i] = clamp((0.5 + (float64(i)/255.0-0.5)*v) * 255.0)
} else if 1 < v && v < 2 {
lut[i] = clamp((0.5 + (float64(i)/255.0-0.5)*(1/(2.0-v))) * 255.0)
} else {
lut[i] = uint8(float64(i)/255.0+0.5) * 255
}
}
return adjustLUT(img, lut)
}
// AdjustBrightness changes the brightness of the image using the percentage parameter and returns the adjusted image.
// The percentage must be in range (-100, 100). The percentage = 0 gives the original image.
// The percentage = -100 gives solid black image. The percentage = 100 gives solid white image.
//
// Examples:
//
// dstImage = imaging.AdjustBrightness(srcImage, -15) // decrease image brightness by 15%
// dstImage = imaging.AdjustBrightness(srcImage, 10) // increase image brightness by 10%
//
func AdjustBrightness(img image.Image, percentage float64) *image.NRGBA {
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
shift := 255.0 * percentage / 100.0
for i := 0; i < 256; i++ {
lut[i] = clamp(float64(i) + shift)
}
return adjustLUT(img, lut)
}
// AdjustGamma performs a gamma correction on the image and returns the adjusted image.
// Gamma parameter must be positive. Gamma = 1.0 gives the original image.
// Gamma less than 1.0 darkens the image and gamma greater than 1.0 lightens it.
//
// Example:
//
// dstImage = imaging.AdjustGamma(srcImage, 0.7)
//
func AdjustGamma(img image.Image, gamma float64) *image.NRGBA {
e := 1.0 / math.Max(gamma, 0.0001)
lut := make([]uint8, 256)
for i := 0; i < 256; i++ {
lut[i] = clamp(math.Pow(float64(i)/255.0, e) * 255.0)
}
return adjustLUT(img, lut)
}
// AdjustSigmoid changes the contrast of the image using a sigmoidal function and returns the adjusted image.
// It's a non-linear contrast change useful for photo adjustments as it preserves highlight and shadow detail.
// The midpoint parameter is the midpoint of contrast that must be between 0 and 1, typically 0.5.
// The factor parameter indicates how much to increase or decrease the contrast, typically in range (-10, 10).
// If the factor parameter is positive the image contrast is increased otherwise the contrast is decreased.
//
// Examples:
//
// dstImage = imaging.AdjustSigmoid(srcImage, 0.5, 3.0) // increase the contrast
// dstImage = imaging.AdjustSigmoid(srcImage, 0.5, -3.0) // decrease the contrast
//
func AdjustSigmoid(img image.Image, midpoint, factor float64) *image.NRGBA {
if factor == 0 {
return Clone(img)
}
lut := make([]uint8, 256)
a := math.Min(math.Max(midpoint, 0.0), 1.0)
b := math.Abs(factor)
sig0 := sigmoid(a, b, 0)
sig1 := sigmoid(a, b, 1)
e := 1.0e-6
if factor > 0 {
for i := 0; i < 256; i++ {
x := float64(i) / 255.0
sigX := sigmoid(a, b, x)
f := (sigX - sig0) / (sig1 - sig0)
lut[i] = clamp(f * 255.0)
}
} else {
for i := 0; i < 256; i++ {
x := float64(i) / 255.0
arg := math.Min(math.Max((sig1-sig0)*x+sig0, e), 1.0-e)
f := a - math.Log(1.0/arg-1.0)/b
lut[i] = clamp(f * 255.0)
}
}
return adjustLUT(img, lut)
}
func sigmoid(a, b, x float64) float64 {
return 1 / (1 + math.Exp(b*(a-x)))
}
// adjustLUT applies the given lookup table to the colors of the image.
func adjustLUT(img image.Image, lut []uint8) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
parallel(0, src.h, func(ys <-chan int) {
for y := range ys {
i := y * dst.Stride
src.scan(0, y, src.w, y+1, dst.Pix[i:i+src.w*4])
for x := 0; x < src.w; x++ {
dst.Pix[i+0] = lut[dst.Pix[i+0]]
dst.Pix[i+1] = lut[dst.Pix[i+1]]
dst.Pix[i+2] = lut[dst.Pix[i+2]]
i += 4
}
}
})
return dst
}
// AdjustFunc applies the fn function to each pixel of the img image and returns the adjusted image.
//
// Example:
//
// dstImage = imaging.AdjustFunc(
// srcImage,
// func(c color.NRGBA) color.NRGBA {
// // shift the red channel by 16
// r := int(c.R) + 16
// if r > 255 {
// r = 255
// }
// return color.NRGBA{uint8(r), c.G, c.B, c.A}
// }
// )
//
func AdjustFunc(img image.Image, fn func(c color.NRGBA) color.NRGBA) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
parallel(0, src.h, func(ys <-chan int) {
for y := range ys {
i := y * dst.Stride
src.scan(0, y, src.w, y+1, dst.Pix[i:i+src.w*4])
for x := 0; x < src.w; x++ {
r := dst.Pix[i+0]
g := dst.Pix[i+1]
b := dst.Pix[i+2]
a := dst.Pix[i+3]
c := fn(color.NRGBA{r, g, b, a})
dst.Pix[i+0] = c.R
dst.Pix[i+1] = c.G
dst.Pix[i+2] = c.B
dst.Pix[i+3] = c.A
i += 4
}
}
})
return dst
}

146
vendor/github.com/disintegration/imaging/convolution.go generated vendored Normal file
View File

@ -0,0 +1,146 @@
package imaging
import (
"image"
)
// ConvolveOptions are convolution parameters.
type ConvolveOptions struct {
// If Normalize is true the kernel is normalized before convolution.
Normalize bool
// If Abs is true the absolute value of each color channel is taken after convolution.
Abs bool
// Bias is added to each color channel value after convolution.
Bias int
}
// Convolve3x3 convolves the image with the specified 3x3 convolution kernel.
// Default parameters are used if a nil *ConvolveOptions is passed.
func Convolve3x3(img image.Image, kernel [9]float64, options *ConvolveOptions) *image.NRGBA {
return convolve(img, kernel[:], options)
}
// Convolve5x5 convolves the image with the specified 5x5 convolution kernel.
// Default parameters are used if a nil *ConvolveOptions is passed.
func Convolve5x5(img image.Image, kernel [25]float64, options *ConvolveOptions) *image.NRGBA {
return convolve(img, kernel[:], options)
}
func convolve(img image.Image, kernel []float64, options *ConvolveOptions) *image.NRGBA {
src := toNRGBA(img)
w := src.Bounds().Max.X
h := src.Bounds().Max.Y
dst := image.NewNRGBA(image.Rect(0, 0, w, h))
if w < 1 || h < 1 {
return dst
}
if options == nil {
options = &ConvolveOptions{}
}
if options.Normalize {
normalizeKernel(kernel)
}
type coef struct {
x, y int
k float64
}
var coefs []coef
var m int
switch len(kernel) {
case 9:
m = 1
case 25:
m = 2
}
i := 0
for y := -m; y <= m; y++ {
for x := -m; x <= m; x++ {
if kernel[i] != 0 {
coefs = append(coefs, coef{x: x, y: y, k: kernel[i]})
}
i++
}
}
parallel(0, h, func(ys <-chan int) {
for y := range ys {
for x := 0; x < w; x++ {
var r, g, b float64
for _, c := range coefs {
ix := x + c.x
if ix < 0 {
ix = 0
} else if ix >= w {
ix = w - 1
}
iy := y + c.y
if iy < 0 {
iy = 0
} else if iy >= h {
iy = h - 1
}
off := iy*src.Stride + ix*4
r += float64(src.Pix[off+0]) * c.k
g += float64(src.Pix[off+1]) * c.k
b += float64(src.Pix[off+2]) * c.k
}
if options.Abs {
if r < 0 {
r = -r
}
if g < 0 {
g = -g
}
if b < 0 {
b = -b
}
}
if options.Bias != 0 {
r += float64(options.Bias)
g += float64(options.Bias)
b += float64(options.Bias)
}
srcOff := y*src.Stride + x*4
dstOff := y*dst.Stride + x*4
dst.Pix[dstOff+0] = clamp(r)
dst.Pix[dstOff+1] = clamp(g)
dst.Pix[dstOff+2] = clamp(b)
dst.Pix[dstOff+3] = src.Pix[srcOff+3]
}
}
})
return dst
}
func normalizeKernel(kernel []float64) {
var sum, sumpos float64
for i := range kernel {
sum += kernel[i]
if kernel[i] > 0 {
sumpos += kernel[i]
}
}
if sum != 0 {
for i := range kernel {
kernel[i] /= sum
}
} else if sumpos != 0 {
for i := range kernel {
kernel[i] /= sumpos
}
}
}

7
vendor/github.com/disintegration/imaging/doc.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
/*
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements image.Image interface
as an input, and return a new image of *image.NRGBA type (32bit RGBA colors, not premultiplied by alpha).
*/
package imaging

165
vendor/github.com/disintegration/imaging/effects.go generated vendored Normal file
View File

@ -0,0 +1,165 @@
package imaging
import (
"image"
"math"
)
func gaussianBlurKernel(x, sigma float64) float64 {
return math.Exp(-(x*x)/(2*sigma*sigma)) / (sigma * math.Sqrt(2*math.Pi))
}
// Blur produces a blurred version of the image using a Gaussian function.
// Sigma parameter must be positive and indicates how much the image will be blurred.
//
// Usage example:
//
// dstImage := imaging.Blur(srcImage, 3.5)
//
func Blur(img image.Image, sigma float64) *image.NRGBA {
if sigma <= 0 {
return Clone(img)
}
radius := int(math.Ceil(sigma * 3.0))
kernel := make([]float64, radius+1)
for i := 0; i <= radius; i++ {
kernel[i] = gaussianBlurKernel(float64(i), sigma)
}
return blurVertical(blurHorizontal(img, kernel), kernel)
}
func blurHorizontal(img image.Image, kernel []float64) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
radius := len(kernel) - 1
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
for x := 0; x < src.w; x++ {
min := x - radius
if min < 0 {
min = 0
}
max := x + radius
if max > src.w-1 {
max = src.w - 1
}
var r, g, b, a, wsum float64
for ix := min; ix <= max; ix++ {
i := ix * 4
weight := kernel[absint(x-ix)]
wsum += weight
wa := float64(scanLine[i+3]) * weight
r += float64(scanLine[i+0]) * wa
g += float64(scanLine[i+1]) * wa
b += float64(scanLine[i+2]) * wa
a += wa
}
if a != 0 {
r /= a
g /= a
b /= a
}
j := y*dst.Stride + x*4
dst.Pix[j+0] = clamp(r)
dst.Pix[j+1] = clamp(g)
dst.Pix[j+2] = clamp(b)
dst.Pix[j+3] = clamp(a / wsum)
}
}
})
return dst
}
func blurVertical(img image.Image, kernel []float64) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
radius := len(kernel) - 1
parallel(0, src.w, func(xs <-chan int) {
scanLine := make([]uint8, src.h*4)
for x := range xs {
src.scan(x, 0, x+1, src.h, scanLine)
for y := 0; y < src.h; y++ {
min := y - radius
if min < 0 {
min = 0
}
max := y + radius
if max > src.h-1 {
max = src.h - 1
}
var r, g, b, a, wsum float64
for iy := min; iy <= max; iy++ {
i := iy * 4
weight := kernel[absint(y-iy)]
wsum += weight
wa := float64(scanLine[i+3]) * weight
r += float64(scanLine[i+0]) * wa
g += float64(scanLine[i+1]) * wa
b += float64(scanLine[i+2]) * wa
a += wa
}
if a != 0 {
r /= a
g /= a
b /= a
}
j := y*dst.Stride + x*4
dst.Pix[j+0] = clamp(r)
dst.Pix[j+1] = clamp(g)
dst.Pix[j+2] = clamp(b)
dst.Pix[j+3] = clamp(a / wsum)
}
}
})
return dst
}
// Sharpen produces a sharpened version of the image.
// Sigma parameter must be positive and indicates how much the image will be sharpened.
//
// Usage example:
//
// dstImage := imaging.Sharpen(srcImage, 3.5)
//
func Sharpen(img image.Image, sigma float64) *image.NRGBA {
if sigma <= 0 {
return Clone(img)
}
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
blurred := Blur(img, sigma)
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
j := y * dst.Stride
for i := 0; i < src.w*4; i++ {
val := int(scanLine[i])<<1 - int(blurred.Pix[j])
if val < 0 {
val = 0
} else if val > 0xff {
val = 0xff
}
dst.Pix[j] = uint8(val)
j++
}
}
})
return dst
}

280
vendor/github.com/disintegration/imaging/helpers.go generated vendored Normal file
View File

@ -0,0 +1,280 @@
package imaging
import (
"errors"
"image"
"image/color"
"image/draw"
"image/gif"
"image/jpeg"
"image/png"
"io"
"os"
"path/filepath"
"strings"
"golang.org/x/image/bmp"
"golang.org/x/image/tiff"
)
// Format is an image file format.
type Format int
// Image file formats.
const (
JPEG Format = iota
PNG
GIF
TIFF
BMP
)
func (f Format) String() string {
switch f {
case JPEG:
return "JPEG"
case PNG:
return "PNG"
case GIF:
return "GIF"
case TIFF:
return "TIFF"
case BMP:
return "BMP"
default:
return "Unsupported"
}
}
var (
// ErrUnsupportedFormat means the given image format (or file extension) is unsupported.
ErrUnsupportedFormat = errors.New("imaging: unsupported image format")
)
type fileSystem interface {
Create(string) (io.WriteCloser, error)
Open(string) (io.ReadCloser, error)
}
type localFS struct{}
func (localFS) Create(name string) (io.WriteCloser, error) { return os.Create(name) }
func (localFS) Open(name string) (io.ReadCloser, error) { return os.Open(name) }
var fs fileSystem = localFS{}
// Decode reads an image from r.
func Decode(r io.Reader) (image.Image, error) {
img, _, err := image.Decode(r)
return img, err
}
// Open loads an image from file
func Open(filename string) (image.Image, error) {
file, err := fs.Open(filename)
if err != nil {
return nil, err
}
defer file.Close()
return Decode(file)
}
type encodeConfig struct {
jpegQuality int
gifNumColors int
gifQuantizer draw.Quantizer
gifDrawer draw.Drawer
pngCompressionLevel png.CompressionLevel
}
var defaultEncodeConfig = encodeConfig{
jpegQuality: 95,
gifNumColors: 256,
gifQuantizer: nil,
gifDrawer: nil,
pngCompressionLevel: png.DefaultCompression,
}
// EncodeOption sets an optional parameter for the Encode and Save functions.
type EncodeOption func(*encodeConfig)
// JPEGQuality returns an EncodeOption that sets the output JPEG quality.
// Quality ranges from 1 to 100 inclusive, higher is better. Default is 95.
func JPEGQuality(quality int) EncodeOption {
return func(c *encodeConfig) {
c.jpegQuality = quality
}
}
// GIFNumColors returns an EncodeOption that sets the maximum number of colors
// used in the GIF-encoded image. It ranges from 1 to 256. Default is 256.
func GIFNumColors(numColors int) EncodeOption {
return func(c *encodeConfig) {
c.gifNumColors = numColors
}
}
// GIFQuantizer returns an EncodeOption that sets the quantizer that is used to produce
// a palette of the GIF-encoded image.
func GIFQuantizer(quantizer draw.Quantizer) EncodeOption {
return func(c *encodeConfig) {
c.gifQuantizer = quantizer
}
}
// GIFDrawer returns an EncodeOption that sets the drawer that is used to convert
// the source image to the desired palette of the GIF-encoded image.
func GIFDrawer(drawer draw.Drawer) EncodeOption {
return func(c *encodeConfig) {
c.gifDrawer = drawer
}
}
// PNGCompressionLevel returns an EncodeOption that sets the compression level
// of the PNG-encoded image. Default is png.DefaultCompression.
func PNGCompressionLevel(level png.CompressionLevel) EncodeOption {
return func(c *encodeConfig) {
c.pngCompressionLevel = level
}
}
// Encode writes the image img to w in the specified format (JPEG, PNG, GIF, TIFF or BMP).
func Encode(w io.Writer, img image.Image, format Format, opts ...EncodeOption) error {
cfg := defaultEncodeConfig
for _, option := range opts {
option(&cfg)
}
var err error
switch format {
case JPEG:
var rgba *image.RGBA
if nrgba, ok := img.(*image.NRGBA); ok {
if nrgba.Opaque() {
rgba = &image.RGBA{
Pix: nrgba.Pix,
Stride: nrgba.Stride,
Rect: nrgba.Rect,
}
}
}
if rgba != nil {
err = jpeg.Encode(w, rgba, &jpeg.Options{Quality: cfg.jpegQuality})
} else {
err = jpeg.Encode(w, img, &jpeg.Options{Quality: cfg.jpegQuality})
}
case PNG:
enc := png.Encoder{CompressionLevel: cfg.pngCompressionLevel}
err = enc.Encode(w, img)
case GIF:
err = gif.Encode(w, img, &gif.Options{
NumColors: cfg.gifNumColors,
Quantizer: cfg.gifQuantizer,
Drawer: cfg.gifDrawer,
})
case TIFF:
err = tiff.Encode(w, img, &tiff.Options{Compression: tiff.Deflate, Predictor: true})
case BMP:
err = bmp.Encode(w, img)
default:
err = ErrUnsupportedFormat
}
return err
}
// Save saves the image to file with the specified filename.
// The format is determined from the filename extension: "jpg" (or "jpeg"), "png", "gif", "tif" (or "tiff") and "bmp" are supported.
//
// Examples:
//
// // Save the image as PNG.
// err := imaging.Save(img, "out.png")
//
// // Save the image as JPEG with optional quality parameter set to 80.
// err := imaging.Save(img, "out.jpg", imaging.JPEGQuality(80))
//
func Save(img image.Image, filename string, opts ...EncodeOption) (err error) {
formats := map[string]Format{
".jpg": JPEG,
".jpeg": JPEG,
".png": PNG,
".tif": TIFF,
".tiff": TIFF,
".bmp": BMP,
".gif": GIF,
}
ext := strings.ToLower(filepath.Ext(filename))
f, ok := formats[ext]
if !ok {
return ErrUnsupportedFormat
}
file, err := fs.Create(filename)
if err != nil {
return err
}
defer func() {
cerr := file.Close()
if err == nil {
err = cerr
}
}()
return Encode(file, img, f, opts...)
}
// New creates a new image with the specified width and height, and fills it with the specified color.
func New(width, height int, fillColor color.Color) *image.NRGBA {
if width <= 0 || height <= 0 {
return &image.NRGBA{}
}
dst := image.NewNRGBA(image.Rect(0, 0, width, height))
c := color.NRGBAModel.Convert(fillColor).(color.NRGBA)
if c.R == 0 && c.G == 0 && c.B == 0 && c.A == 0 {
return dst
}
// Fill the first row.
i := 0
for x := 0; x < width; x++ {
dst.Pix[i+0] = c.R
dst.Pix[i+1] = c.G
dst.Pix[i+2] = c.B
dst.Pix[i+3] = c.A
i += 4
}
// Copy the first row to other rows.
size := width * 4
parallel(1, height, func(ys <-chan int) {
for y := range ys {
i = y * dst.Stride
copy(dst.Pix[i:i+size], dst.Pix[0:size])
}
})
return dst
}
// Clone returns a copy of the given image.
func Clone(img image.Image) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
size := src.w * 4
parallel(0, src.h, func(ys <-chan int) {
for y := range ys {
i := y * dst.Stride
src.scan(0, y, src.w, y+1, dst.Pix[i:i+size])
}
})
return dst
}

51
vendor/github.com/disintegration/imaging/histogram.go generated vendored Normal file
View File

@ -0,0 +1,51 @@
package imaging
import (
"image"
"sync"
)
// Histogram returns a normalized histogram of an image.
//
// Resulting histogram is represented as an array of 256 floats, where
// histogram[i] is a probability of a pixel being of a particular luminance i.
func Histogram(img image.Image) [256]float64 {
var mu sync.Mutex
var histogram [256]float64
var total float64
src := newScanner(img)
if src.w == 0 || src.h == 0 {
return histogram
}
parallel(0, src.h, func(ys <-chan int) {
var tmpHistogram [256]float64
var tmpTotal float64
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
i := 0
for x := 0; x < src.w; x++ {
r := scanLine[i+0]
g := scanLine[i+1]
b := scanLine[i+2]
y := 0.299*float32(r) + 0.587*float32(g) + 0.114*float32(b)
tmpHistogram[int(y+0.5)]++
tmpTotal++
i += 4
}
}
mu.Lock()
for i := 0; i < 256; i++ {
histogram[i] += tmpHistogram[i]
}
total += tmpTotal
mu.Unlock()
})
for i := 0; i < 256; i++ {
histogram[i] = histogram[i] / total
}
return histogram
}

572
vendor/github.com/disintegration/imaging/resize.go generated vendored Normal file
View File

@ -0,0 +1,572 @@
package imaging
import (
"image"
"math"
)
type indexWeight struct {
index int
weight float64
}
func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) [][]indexWeight {
du := float64(srcSize) / float64(dstSize)
scale := du
if scale < 1.0 {
scale = 1.0
}
ru := math.Ceil(scale * filter.Support)
out := make([][]indexWeight, dstSize)
tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2)
for v := 0; v < dstSize; v++ {
fu := (float64(v)+0.5)*du - 0.5
begin := int(math.Ceil(fu - ru))
if begin < 0 {
begin = 0
}
end := int(math.Floor(fu + ru))
if end > srcSize-1 {
end = srcSize - 1
}
var sum float64
for u := begin; u <= end; u++ {
w := filter.Kernel((float64(u) - fu) / scale)
if w != 0 {
sum += w
tmp = append(tmp, indexWeight{index: u, weight: w})
}
}
if sum != 0 {
for i := range tmp {
tmp[i].weight /= sum
}
}
out[v] = tmp
tmp = tmp[len(tmp):]
}
return out
}
// Resize resizes the image to the specified width and height using the specified resampling
// filter and returns the transformed image. If one of width or height is 0, the image aspect
// ratio is preserved.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
//
func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
if dstW < 0 || dstH < 0 {
return &image.NRGBA{}
}
if dstW == 0 && dstH == 0 {
return &image.NRGBA{}
}
srcW := img.Bounds().Dx()
srcH := img.Bounds().Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
// If new width or height is 0 then preserve aspect ratio, minimum 1px.
if dstW == 0 {
tmpW := float64(dstH) * float64(srcW) / float64(srcH)
dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
}
if dstH == 0 {
tmpH := float64(dstW) * float64(srcH) / float64(srcW)
dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
}
if filter.Support <= 0 {
// Nearest-neighbor special case.
return resizeNearest(img, dstW, dstH)
}
if srcW != dstW && srcH != dstH {
return resizeVertical(resizeHorizontal(img, dstW, filter), dstH, filter)
}
if srcW != dstW {
return resizeHorizontal(img, dstW, filter)
}
if srcH != dstH {
return resizeVertical(img, dstH, filter)
}
return Clone(img)
}
func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, width, src.h))
weights := precomputeWeights(width, src.w, filter)
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
j0 := y * dst.Stride
for x := 0; x < width; x++ {
var r, g, b, a float64
for _, w := range weights[x] {
i := w.index * 4
aw := float64(scanLine[i+3]) * w.weight
r += float64(scanLine[i+0]) * aw
g += float64(scanLine[i+1]) * aw
b += float64(scanLine[i+2]) * aw
a += aw
}
if a != 0 {
aInv := 1 / a
j := j0 + x*4
dst.Pix[j+0] = clamp(r * aInv)
dst.Pix[j+1] = clamp(g * aInv)
dst.Pix[j+2] = clamp(b * aInv)
dst.Pix[j+3] = clamp(a)
}
}
}
})
return dst
}
func resizeVertical(img image.Image, height int, filter ResampleFilter) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, height))
weights := precomputeWeights(height, src.h, filter)
parallel(0, src.w, func(xs <-chan int) {
scanLine := make([]uint8, src.h*4)
for x := range xs {
src.scan(x, 0, x+1, src.h, scanLine)
for y := 0; y < height; y++ {
var r, g, b, a float64
for _, w := range weights[y] {
i := w.index * 4
aw := float64(scanLine[i+3]) * w.weight
r += float64(scanLine[i+0]) * aw
g += float64(scanLine[i+1]) * aw
b += float64(scanLine[i+2]) * aw
a += aw
}
if a != 0 {
aInv := 1 / a
j := y*dst.Stride + x*4
dst.Pix[j+0] = clamp(r * aInv)
dst.Pix[j+1] = clamp(g * aInv)
dst.Pix[j+2] = clamp(b * aInv)
dst.Pix[j+3] = clamp(a)
}
}
}
})
return dst
}
// resizeNearest is a fast nearest-neighbor resize, no filtering.
func resizeNearest(img image.Image, width, height int) *image.NRGBA {
dst := image.NewNRGBA(image.Rect(0, 0, width, height))
dx := float64(img.Bounds().Dx()) / float64(width)
dy := float64(img.Bounds().Dy()) / float64(height)
if dx > 1 && dy > 1 {
src := newScanner(img)
parallel(0, height, func(ys <-chan int) {
for y := range ys {
srcY := int((float64(y) + 0.5) * dy)
dstOff := y * dst.Stride
for x := 0; x < width; x++ {
srcX := int((float64(x) + 0.5) * dx)
src.scan(srcX, srcY, srcX+1, srcY+1, dst.Pix[dstOff:dstOff+4])
dstOff += 4
}
}
})
} else {
src := toNRGBA(img)
parallel(0, height, func(ys <-chan int) {
for y := range ys {
srcY := int((float64(y) + 0.5) * dy)
srcOff0 := srcY * src.Stride
dstOff := y * dst.Stride
for x := 0; x < width; x++ {
srcX := int((float64(x) + 0.5) * dx)
srcOff := srcOff0 + srcX*4
copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
dstOff += 4
}
}
})
}
return dst
}
// Fit scales down the image using the specified resample filter to fit the specified
// maximum width and height and returns the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
//
func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
maxW, maxH := width, height
if maxW <= 0 || maxH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW <= maxW && srcH <= maxH {
return Clone(img)
}
srcAspectRatio := float64(srcW) / float64(srcH)
maxAspectRatio := float64(maxW) / float64(maxH)
var newW, newH int
if srcAspectRatio > maxAspectRatio {
newW = maxW
newH = int(float64(newW) / srcAspectRatio)
} else {
newH = maxH
newW = int(float64(newH) * srcAspectRatio)
}
return Resize(img, newW, newH, filter)
}
// Fill scales the image to the smallest possible size that will cover the specified dimensions,
// crops the resized image to the specified dimensions using the given anchor point and returns
// the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
//
func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
minW, minH := width, height
if minW <= 0 || minH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW == minW && srcH == minH {
return Clone(img)
}
srcAspectRatio := float64(srcW) / float64(srcH)
minAspectRatio := float64(minW) / float64(minH)
var tmp *image.NRGBA
if srcAspectRatio < minAspectRatio {
tmp = Resize(img, minW, 0, filter)
} else {
tmp = Resize(img, 0, minH, filter)
}
return CropAnchor(tmp, minW, minH, anchor)
}
// Thumbnail scales the image up or down using the specified resample filter, crops it
// to the specified width and hight and returns the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
//
func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
return Fill(img, width, height, Center, filter)
}
// ResampleFilter is a resampling filter struct. It can be used to define custom filters.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// General filter recommendations:
//
// - Lanczos
// High-quality resampling filter for photographic images yielding sharp results.
// It's slower than cubic filters (see below).
//
// - CatmullRom
// A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed.
//
// - MitchellNetravali
// A high quality cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
//
// - BSpline
// A good filter if a very smooth output is needed.
//
// - Linear
// Bilinear interpolation filter, produces reasonably good, smooth output.
// It's faster than cubic filters.
//
// - Box
// Simple and fast averaging filter appropriate for downscaling.
// When upscaling it's similar to NearestNeighbor.
//
// - NearestNeighbor
// Fastest resampling filter, no antialiasing.
//
type ResampleFilter struct {
Support float64
Kernel func(float64) float64
}
// NearestNeighbor is a nearest-neighbor filter (no anti-aliasing).
var NearestNeighbor ResampleFilter
// Box filter (averaging pixels).
var Box ResampleFilter
// Linear filter.
var Linear ResampleFilter
// Hermite cubic spline filter (BC-spline; B=0; C=0).
var Hermite ResampleFilter
// MitchellNetravali is Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
var MitchellNetravali ResampleFilter
// CatmullRom is a Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
var CatmullRom ResampleFilter
// BSpline is a smooth cubic filter (BC-spline; B=1; C=0).
var BSpline ResampleFilter
// Gaussian is a Gaussian blurring Filter.
var Gaussian ResampleFilter
// Bartlett is a Bartlett-windowed sinc filter (3 lobes).
var Bartlett ResampleFilter
// Lanczos filter (3 lobes).
var Lanczos ResampleFilter
// Hann is a Hann-windowed sinc filter (3 lobes).
var Hann ResampleFilter
// Hamming is a Hamming-windowed sinc filter (3 lobes).
var Hamming ResampleFilter
// Blackman is a Blackman-windowed sinc filter (3 lobes).
var Blackman ResampleFilter
// Welch is a Welch-windowed sinc filter (parabolic window, 3 lobes).
var Welch ResampleFilter
// Cosine is a Cosine-windowed sinc filter (3 lobes).
var Cosine ResampleFilter
func bcspline(x, b, c float64) float64 {
var y float64
x = math.Abs(x)
if x < 1.0 {
y = ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
} else if x < 2.0 {
y = ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
}
return y
}
func sinc(x float64) float64 {
if x == 0 {
return 1
}
return math.Sin(math.Pi*x) / (math.Pi * x)
}
func init() {
NearestNeighbor = ResampleFilter{
Support: 0.0, // special case - not applying the filter
}
Box = ResampleFilter{
Support: 0.5,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x <= 0.5 {
return 1.0
}
return 0
},
}
Linear = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return 1.0 - x
}
return 0
},
}
Hermite = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return bcspline(x, 0.0, 0.0)
}
return 0
},
}
MitchellNetravali = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0/3.0, 1.0/3.0)
}
return 0
},
}
CatmullRom = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 0.0, 0.5)
}
return 0
},
}
BSpline = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0, 0.0)
}
return 0
},
}
Gaussian = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return math.Exp(-2 * x * x)
}
return 0
},
}
Bartlett = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (3.0 - x) / 3.0
}
return 0
},
}
Lanczos = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * sinc(x/3.0)
}
return 0
},
}
Hann = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Hamming = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Blackman = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
}
return 0
},
}
Welch = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (1.0 - (x * x / 9.0))
}
return 0
},
}
Cosine = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
}
return 0
},
}
}

250
vendor/github.com/disintegration/imaging/scanner.go generated vendored Normal file
View File

@ -0,0 +1,250 @@
package imaging
import (
"image"
"image/color"
)
type scanner struct {
image image.Image
w, h int
palette []color.NRGBA
}
func newScanner(img image.Image) *scanner {
s := &scanner{
image: img,
w: img.Bounds().Dx(),
h: img.Bounds().Dy(),
}
if img, ok := img.(*image.Paletted); ok {
s.palette = make([]color.NRGBA, len(img.Palette))
for i := 0; i < len(img.Palette); i++ {
s.palette[i] = color.NRGBAModel.Convert(img.Palette[i]).(color.NRGBA)
}
}
return s
}
// scan scans the given rectangular region of the image into dst.
func (s *scanner) scan(x1, y1, x2, y2 int, dst []uint8) {
switch img := s.image.(type) {
case *image.NRGBA:
size := (x2 - x1) * 4
j := 0
i := y1*img.Stride + x1*4
for y := y1; y < y2; y++ {
copy(dst[j:j+size], img.Pix[i:i+size])
j += size
i += img.Stride
}
case *image.NRGBA64:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*8
for x := x1; x < x2; x++ {
dst[j+0] = img.Pix[i+0]
dst[j+1] = img.Pix[i+2]
dst[j+2] = img.Pix[i+4]
dst[j+3] = img.Pix[i+6]
j += 4
i += 8
}
}
case *image.RGBA:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*4
for x := x1; x < x2; x++ {
a := img.Pix[i+3]
switch a {
case 0:
dst[j+0] = 0
dst[j+1] = 0
dst[j+2] = 0
case 0xff:
dst[j+0] = img.Pix[i+0]
dst[j+1] = img.Pix[i+1]
dst[j+2] = img.Pix[i+2]
default:
r16 := uint16(img.Pix[i+0])
g16 := uint16(img.Pix[i+1])
b16 := uint16(img.Pix[i+2])
a16 := uint16(a)
dst[j+0] = uint8(r16 * 0xff / a16)
dst[j+1] = uint8(g16 * 0xff / a16)
dst[j+2] = uint8(b16 * 0xff / a16)
}
dst[j+3] = a
j += 4
i += 4
}
}
case *image.RGBA64:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*8
for x := x1; x < x2; x++ {
a := img.Pix[i+6]
switch a {
case 0:
dst[j+0] = 0
dst[j+1] = 0
dst[j+2] = 0
case 0xff:
dst[j+0] = img.Pix[i+0]
dst[j+1] = img.Pix[i+2]
dst[j+2] = img.Pix[i+4]
default:
r32 := uint32(img.Pix[i+0])<<8 | uint32(img.Pix[i+1])
g32 := uint32(img.Pix[i+2])<<8 | uint32(img.Pix[i+3])
b32 := uint32(img.Pix[i+4])<<8 | uint32(img.Pix[i+5])
a32 := uint32(img.Pix[i+6])<<8 | uint32(img.Pix[i+7])
dst[j+0] = uint8((r32 * 0xffff / a32) >> 8)
dst[j+1] = uint8((g32 * 0xffff / a32) >> 8)
dst[j+2] = uint8((b32 * 0xffff / a32) >> 8)
}
dst[j+3] = a
j += 4
i += 8
}
}
case *image.Gray:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1
for x := x1; x < x2; x++ {
c := img.Pix[i]
dst[j+0] = c
dst[j+1] = c
dst[j+2] = c
dst[j+3] = 0xff
j += 4
i++
}
}
case *image.Gray16:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*2
for x := x1; x < x2; x++ {
c := img.Pix[i]
dst[j+0] = c
dst[j+1] = c
dst[j+2] = c
dst[j+3] = 0xff
j += 4
i += 2
}
}
case *image.YCbCr:
j := 0
x1 += img.Rect.Min.X
x2 += img.Rect.Min.X
y1 += img.Rect.Min.Y
y2 += img.Rect.Min.Y
for y := y1; y < y2; y++ {
iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X)
for x := x1; x < x2; x++ {
var ic int
switch img.SubsampleRatio {
case image.YCbCrSubsampleRatio444:
ic = (y-img.Rect.Min.Y)*img.CStride + (x - img.Rect.Min.X)
case image.YCbCrSubsampleRatio422:
ic = (y-img.Rect.Min.Y)*img.CStride + (x/2 - img.Rect.Min.X/2)
case image.YCbCrSubsampleRatio420:
ic = (y/2-img.Rect.Min.Y/2)*img.CStride + (x/2 - img.Rect.Min.X/2)
case image.YCbCrSubsampleRatio440:
ic = (y/2-img.Rect.Min.Y/2)*img.CStride + (x - img.Rect.Min.X)
default:
ic = img.COffset(x, y)
}
yy := int(img.Y[iy])
cb := int(img.Cb[ic]) - 128
cr := int(img.Cr[ic]) - 128
r := (yy<<16 + 91881*cr + 1<<15) >> 16
if r > 0xff {
r = 0xff
} else if r < 0 {
r = 0
}
g := (yy<<16 - 22554*cb - 46802*cr + 1<<15) >> 16
if g > 0xff {
g = 0xff
} else if g < 0 {
g = 0
}
b := (yy<<16 + 116130*cb + 1<<15) >> 16
if b > 0xff {
b = 0xff
} else if b < 0 {
b = 0
}
dst[j+0] = uint8(r)
dst[j+1] = uint8(g)
dst[j+2] = uint8(b)
dst[j+3] = 0xff
iy++
j += 4
}
}
case *image.Paletted:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1
for x := x1; x < x2; x++ {
c := s.palette[img.Pix[i]]
dst[j+0] = c.R
dst[j+1] = c.G
dst[j+2] = c.B
dst[j+3] = c.A
j += 4
i++
}
}
default:
j := 0
b := s.image.Bounds()
x1 += b.Min.X
x2 += b.Min.X
y1 += b.Min.Y
y2 += b.Min.Y
for y := y1; y < y2; y++ {
for x := x1; x < x2; x++ {
r16, g16, b16, a16 := s.image.At(x, y).RGBA()
switch a16 {
case 0xffff:
dst[j+0] = uint8(r16 >> 8)
dst[j+1] = uint8(g16 >> 8)
dst[j+2] = uint8(b16 >> 8)
dst[j+3] = 0xff
case 0:
dst[j+0] = 0
dst[j+1] = 0
dst[j+2] = 0
dst[j+3] = 0
default:
dst[j+0] = uint8(((r16 * 0xffff) / a16) >> 8)
dst[j+1] = uint8(((g16 * 0xffff) / a16) >> 8)
dst[j+2] = uint8(((b16 * 0xffff) / a16) >> 8)
dst[j+3] = uint8(a16 >> 8)
}
j += 4
}
}
}
}

213
vendor/github.com/disintegration/imaging/tools.go generated vendored Normal file
View File

@ -0,0 +1,213 @@
package imaging
import (
"image"
"math"
)
// Anchor is the anchor point for image alignment.
type Anchor int
// Anchor point positions.
const (
Center Anchor = iota
TopLeft
Top
TopRight
Left
Right
BottomLeft
Bottom
BottomRight
)
func anchorPt(b image.Rectangle, w, h int, anchor Anchor) image.Point {
var x, y int
switch anchor {
case TopLeft:
x = b.Min.X
y = b.Min.Y
case Top:
x = b.Min.X + (b.Dx()-w)/2
y = b.Min.Y
case TopRight:
x = b.Max.X - w
y = b.Min.Y
case Left:
x = b.Min.X
y = b.Min.Y + (b.Dy()-h)/2
case Right:
x = b.Max.X - w
y = b.Min.Y + (b.Dy()-h)/2
case BottomLeft:
x = b.Min.X
y = b.Max.Y - h
case Bottom:
x = b.Min.X + (b.Dx()-w)/2
y = b.Max.Y - h
case BottomRight:
x = b.Max.X - w
y = b.Max.Y - h
default:
x = b.Min.X + (b.Dx()-w)/2
y = b.Min.Y + (b.Dy()-h)/2
}
return image.Pt(x, y)
}
// Crop cuts out a rectangular region with the specified bounds
// from the image and returns the cropped image.
func Crop(img image.Image, rect image.Rectangle) *image.NRGBA {
r := rect.Intersect(img.Bounds()).Sub(img.Bounds().Min)
if r.Empty() {
return &image.NRGBA{}
}
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, r.Dx(), r.Dy()))
rowSize := r.Dx() * 4
parallel(r.Min.Y, r.Max.Y, func(ys <-chan int) {
for y := range ys {
i := (y - r.Min.Y) * dst.Stride
src.scan(r.Min.X, y, r.Max.X, y+1, dst.Pix[i:i+rowSize])
}
})
return dst
}
// CropAnchor cuts out a rectangular region with the specified size
// from the image using the specified anchor point and returns the cropped image.
func CropAnchor(img image.Image, width, height int, anchor Anchor) *image.NRGBA {
srcBounds := img.Bounds()
pt := anchorPt(srcBounds, width, height, anchor)
r := image.Rect(0, 0, width, height).Add(pt)
b := srcBounds.Intersect(r)
return Crop(img, b)
}
// CropCenter cuts out a rectangular region with the specified size
// from the center of the image and returns the cropped image.
func CropCenter(img image.Image, width, height int) *image.NRGBA {
return CropAnchor(img, width, height, Center)
}
// Paste pastes the img image to the background image at the specified position and returns the combined image.
func Paste(background, img image.Image, pos image.Point) *image.NRGBA {
dst := Clone(background)
pos = pos.Sub(background.Bounds().Min)
pasteRect := image.Rectangle{Min: pos, Max: pos.Add(img.Bounds().Size())}
interRect := pasteRect.Intersect(dst.Bounds())
if interRect.Empty() {
return dst
}
src := newScanner(img)
parallel(interRect.Min.Y, interRect.Max.Y, func(ys <-chan int) {
for y := range ys {
x1 := interRect.Min.X - pasteRect.Min.X
x2 := interRect.Max.X - pasteRect.Min.X
y1 := y - pasteRect.Min.Y
y2 := y1 + 1
i1 := y*dst.Stride + interRect.Min.X*4
i2 := i1 + interRect.Dx()*4
src.scan(x1, y1, x2, y2, dst.Pix[i1:i2])
}
})
return dst
}
// PasteCenter pastes the img image to the center of the background image and returns the combined image.
func PasteCenter(background, img image.Image) *image.NRGBA {
bgBounds := background.Bounds()
bgW := bgBounds.Dx()
bgH := bgBounds.Dy()
bgMinX := bgBounds.Min.X
bgMinY := bgBounds.Min.Y
centerX := bgMinX + bgW/2
centerY := bgMinY + bgH/2
x0 := centerX - img.Bounds().Dx()/2
y0 := centerY - img.Bounds().Dy()/2
return Paste(background, img, image.Pt(x0, y0))
}
// Overlay draws the img image over the background image at given position
// and returns the combined image. Opacity parameter is the opacity of the img
// image layer, used to compose the images, it must be from 0.0 to 1.0.
//
// Usage examples:
//
// // Draw spriteImage over backgroundImage at the given position (x=50, y=50).
// dstImage := imaging.Overlay(backgroundImage, spriteImage, image.Pt(50, 50), 1.0)
//
// // Blend two opaque images of the same size.
// dstImage := imaging.Overlay(imageOne, imageTwo, image.Pt(0, 0), 0.5)
//
func Overlay(background, img image.Image, pos image.Point, opacity float64) *image.NRGBA {
opacity = math.Min(math.Max(opacity, 0.0), 1.0) // Ensure 0.0 <= opacity <= 1.0.
dst := Clone(background)
pos = pos.Sub(background.Bounds().Min)
pasteRect := image.Rectangle{Min: pos, Max: pos.Add(img.Bounds().Size())}
interRect := pasteRect.Intersect(dst.Bounds())
if interRect.Empty() {
return dst
}
src := newScanner(img)
parallel(interRect.Min.Y, interRect.Max.Y, func(ys <-chan int) {
scanLine := make([]uint8, interRect.Dx()*4)
for y := range ys {
x1 := interRect.Min.X - pasteRect.Min.X
x2 := interRect.Max.X - pasteRect.Min.X
y1 := y - pasteRect.Min.Y
y2 := y1 + 1
src.scan(x1, y1, x2, y2, scanLine)
i := y*dst.Stride + interRect.Min.X*4
j := 0
for x := interRect.Min.X; x < interRect.Max.X; x++ {
r1 := float64(dst.Pix[i+0])
g1 := float64(dst.Pix[i+1])
b1 := float64(dst.Pix[i+2])
a1 := float64(dst.Pix[i+3])
r2 := float64(scanLine[j+0])
g2 := float64(scanLine[j+1])
b2 := float64(scanLine[j+2])
a2 := float64(scanLine[j+3])
coef2 := opacity * a2 / 255
coef1 := (1 - coef2) * a1 / 255
coefSum := coef1 + coef2
coef1 /= coefSum
coef2 /= coefSum
dst.Pix[i+0] = uint8(r1*coef1 + r2*coef2)
dst.Pix[i+1] = uint8(g1*coef1 + g2*coef2)
dst.Pix[i+2] = uint8(b1*coef1 + b2*coef2)
dst.Pix[i+3] = uint8(math.Min(a1+a2*opacity*(255-a1)/255, 255))
i += 4
j += 4
}
}
})
return dst
}
// OverlayCenter overlays the img image to the center of the background image and
// returns the combined image. Opacity parameter is the opacity of the img
// image layer, used to compose the images, it must be from 0.0 to 1.0.
func OverlayCenter(background, img image.Image, opacity float64) *image.NRGBA {
bgBounds := background.Bounds()
bgW := bgBounds.Dx()
bgH := bgBounds.Dy()
bgMinX := bgBounds.Min.X
bgMinY := bgBounds.Min.Y
centerX := bgMinX + bgW/2
centerY := bgMinY + bgH/2
x0 := centerX - img.Bounds().Dx()/2
y0 := centerY - img.Bounds().Dy()/2
return Overlay(background, img, image.Point{x0, y0}, opacity)
}

271
vendor/github.com/disintegration/imaging/transform.go generated vendored Normal file
View File

@ -0,0 +1,271 @@
package imaging
import (
"image"
"image/color"
"math"
)
// FlipH flips the image horizontally (from left to right) and returns the transformed image.
func FlipH(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.w
dstH := src.h
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcY := dstY
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
reverse(dst.Pix[i : i+rowSize])
}
})
return dst
}
// FlipV flips the image vertically (from top to bottom) and returns the transformed image.
func FlipV(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.w
dstH := src.h
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcY := dstH - dstY - 1
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
}
})
return dst
}
// Transpose flips the image horizontally and rotates 90 degrees counter-clockwise.
func Transpose(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.h
dstH := src.w
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcX := dstY
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
}
})
return dst
}
// Transverse flips the image vertically and rotates 90 degrees counter-clockwise.
func Transverse(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.h
dstH := src.w
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcX := dstH - dstY - 1
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
reverse(dst.Pix[i : i+rowSize])
}
})
return dst
}
// Rotate90 rotates the image 90 degrees counter-clockwise and returns the transformed image.
func Rotate90(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.h
dstH := src.w
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcX := dstH - dstY - 1
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
}
})
return dst
}
// Rotate180 rotates the image 180 degrees counter-clockwise and returns the transformed image.
func Rotate180(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.w
dstH := src.h
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcY := dstH - dstY - 1
src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize])
reverse(dst.Pix[i : i+rowSize])
}
})
return dst
}
// Rotate270 rotates the image 270 degrees counter-clockwise and returns the transformed image.
func Rotate270(img image.Image) *image.NRGBA {
src := newScanner(img)
dstW := src.h
dstH := src.w
rowSize := dstW * 4
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
i := dstY * dst.Stride
srcX := dstY
src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize])
reverse(dst.Pix[i : i+rowSize])
}
})
return dst
}
// Rotate rotates an image by the given angle counter-clockwise .
// The angle parameter is the rotation angle in degrees.
// The bgColor parameter specifies the color of the uncovered zone after the rotation.
func Rotate(img image.Image, angle float64, bgColor color.Color) *image.NRGBA {
angle = angle - math.Floor(angle/360)*360
switch angle {
case 0:
return Clone(img)
case 90:
return Rotate90(img)
case 180:
return Rotate180(img)
case 270:
return Rotate270(img)
}
src := toNRGBA(img)
srcW := src.Bounds().Max.X
srcH := src.Bounds().Max.Y
dstW, dstH := rotatedSize(srcW, srcH, angle)
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
if dstW <= 0 || dstH <= 0 {
return dst
}
srcXOff := float64(srcW)/2 - 0.5
srcYOff := float64(srcH)/2 - 0.5
dstXOff := float64(dstW)/2 - 0.5
dstYOff := float64(dstH)/2 - 0.5
bgColorNRGBA := color.NRGBAModel.Convert(bgColor).(color.NRGBA)
sin, cos := math.Sincos(math.Pi * angle / 180)
parallel(0, dstH, func(ys <-chan int) {
for dstY := range ys {
for dstX := 0; dstX < dstW; dstX++ {
xf, yf := rotatePoint(float64(dstX)-dstXOff, float64(dstY)-dstYOff, sin, cos)
xf, yf = xf+srcXOff, yf+srcYOff
interpolatePoint(dst, dstX, dstY, src, xf, yf, bgColorNRGBA)
}
}
})
return dst
}
func rotatePoint(x, y, sin, cos float64) (float64, float64) {
return x*cos - y*sin, x*sin + y*cos
}
func rotatedSize(w, h int, angle float64) (int, int) {
if w <= 0 || h <= 0 {
return 0, 0
}
sin, cos := math.Sincos(math.Pi * angle / 180)
x1, y1 := rotatePoint(float64(w-1), 0, sin, cos)
x2, y2 := rotatePoint(float64(w-1), float64(h-1), sin, cos)
x3, y3 := rotatePoint(0, float64(h-1), sin, cos)
minx := math.Min(x1, math.Min(x2, math.Min(x3, 0)))
maxx := math.Max(x1, math.Max(x2, math.Max(x3, 0)))
miny := math.Min(y1, math.Min(y2, math.Min(y3, 0)))
maxy := math.Max(y1, math.Max(y2, math.Max(y3, 0)))
neww := maxx - minx + 1
if neww-math.Floor(neww) > 0.1 {
neww++
}
newh := maxy - miny + 1
if newh-math.Floor(newh) > 0.1 {
newh++
}
return int(neww), int(newh)
}
func interpolatePoint(dst *image.NRGBA, dstX, dstY int, src *image.NRGBA, xf, yf float64, bgColor color.NRGBA) {
dstIndex := dstY*dst.Stride + dstX*4
x0 := int(math.Floor(xf))
y0 := int(math.Floor(yf))
bounds := src.Bounds()
if !image.Pt(x0, y0).In(image.Rect(bounds.Min.X-1, bounds.Min.Y-1, bounds.Max.X, bounds.Max.Y)) {
dst.Pix[dstIndex+0] = bgColor.R
dst.Pix[dstIndex+1] = bgColor.G
dst.Pix[dstIndex+2] = bgColor.B
dst.Pix[dstIndex+3] = bgColor.A
return
}
xq := xf - float64(x0)
yq := yf - float64(y0)
var pxs [4]color.NRGBA
var cfs [4]float64
for i := 0; i < 2; i++ {
for j := 0; j < 2; j++ {
k := i*2 + j
pt := image.Pt(x0+j, y0+i)
if pt.In(bounds) {
l := pt.Y*src.Stride + pt.X*4
pxs[k].R = src.Pix[l+0]
pxs[k].G = src.Pix[l+1]
pxs[k].B = src.Pix[l+2]
pxs[k].A = src.Pix[l+3]
} else {
pxs[k] = bgColor
}
}
}
cfs[0] = (1 - xq) * (1 - yq)
cfs[1] = xq * (1 - yq)
cfs[2] = (1 - xq) * yq
cfs[3] = xq * yq
var r, g, b, a float64
for i := range pxs {
wa := float64(pxs[i].A) * cfs[i]
r += float64(pxs[i].R) * wa
g += float64(pxs[i].G) * wa
b += float64(pxs[i].B) * wa
a += wa
}
if a != 0 {
r /= a
g /= a
b /= a
}
dst.Pix[dstIndex+0] = clamp(r)
dst.Pix[dstIndex+1] = clamp(g)
dst.Pix[dstIndex+2] = clamp(b)
dst.Pix[dstIndex+3] = clamp(a)
}

83
vendor/github.com/disintegration/imaging/utils.go generated vendored Normal file
View File

@ -0,0 +1,83 @@
package imaging
import (
"image"
"runtime"
"sync"
)
// parallel processes the data in separate goroutines.
func parallel(start, stop int, fn func(<-chan int)) {
count := stop - start
if count < 1 {
return
}
procs := runtime.GOMAXPROCS(0)
if procs > count {
procs = count
}
c := make(chan int, count)
for i := start; i < stop; i++ {
c <- i
}
close(c)
var wg sync.WaitGroup
for i := 0; i < procs; i++ {
wg.Add(1)
go func() {
defer wg.Done()
fn(c)
}()
}
wg.Wait()
}
// absint returns the absolute value of i.
func absint(i int) int {
if i < 0 {
return -i
}
return i
}
// clamp rounds and clamps float64 value to fit into uint8.
func clamp(x float64) uint8 {
v := int64(x + 0.5)
if v > 255 {
return 255
}
if v > 0 {
return uint8(v)
}
return 0
}
func reverse(pix []uint8) {
if len(pix) <= 4 {
return
}
i := 0
j := len(pix) - 4
for i < j {
pix[i+0], pix[j+0] = pix[j+0], pix[i+0]
pix[i+1], pix[j+1] = pix[j+1], pix[i+1]
pix[i+2], pix[j+2] = pix[j+2], pix[i+2]
pix[i+3], pix[j+3] = pix[j+3], pix[i+3]
i += 4
j -= 4
}
}
func toNRGBA(img image.Image) *image.NRGBA {
if img, ok := img.(*image.NRGBA); ok {
return &image.NRGBA{
Pix: img.Pix,
Stride: img.Stride,
Rect: img.Rect.Sub(img.Rect.Min),
}
}
return Clone(img)
}