196 lines
5.6 KiB
Python
196 lines
5.6 KiB
Python
import matplotlib.pyplot as plt
|
|
from numpy import *
|
|
import sys
|
|
import re
|
|
|
|
#limits of function:
|
|
print(sys.argv)
|
|
#put function here
|
|
func=lambda x: 1/10*x-x**2/400
|
|
a_s = sys.argv[2]
|
|
b_s = sys.argv[3]
|
|
if len(sys.argv) > 3:
|
|
print("LONGER")
|
|
#print('save_state: {}'.format(save_state))
|
|
func_string = sys.argv[1]
|
|
|
|
a = float(re.sub("a=", "", a_s))
|
|
b = float(re.sub("b=", "", b_s))
|
|
N= 1000
|
|
|
|
def plotter():
|
|
x = linspace(a,b, N)
|
|
plt.figure(figsize=(10,10))
|
|
plt.plot(x,func(x), label=func_string)
|
|
#plt.plot(x,g(x), label='g(x)')
|
|
plt.legend(loc='best')
|
|
plt.grid()
|
|
plt.savefig("/tmp/plot.png", dpi=150)
|
|
|
|
# License: Creative Commons Zero (almost public domain) http://scpyce.org/cc0
|
|
|
|
import numpy as np
|
|
|
|
def sample_function(func, points, tol=0.05, min_points=16, max_level=16,
|
|
sample_transform=None):
|
|
"""
|
|
Sample a 1D function to given tolerance by adaptive subdivision.
|
|
|
|
The result of sampling is a set of points that, if plotted,
|
|
produces a smooth curve with also sharp features of the function
|
|
resolved.
|
|
|
|
Parameters
|
|
----------
|
|
func : callable
|
|
Function func(x) of a single argument. It is assumed to be vectorized.
|
|
points : array-like, 1D
|
|
Initial points to sample, sorted in ascending order.
|
|
These will determine also the bounds of sampling.
|
|
tol : float, optional
|
|
Tolerance to sample to. The condition is roughly that the total
|
|
length of the curve on the (x, y) plane is computed up to this
|
|
tolerance.
|
|
min_point : int, optional
|
|
Minimum number of points to sample.
|
|
max_level : int, optional
|
|
Maximum subdivision depth.
|
|
sample_transform : callable, optional
|
|
Function w = g(x, y). The x-samples are generated so that w
|
|
is sampled.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
X-coordinates
|
|
y : ndarray
|
|
Corresponding values of func(x)
|
|
|
|
Notes
|
|
-----
|
|
This routine is useful in computing functions that are expensive
|
|
to compute, and have sharp features --- it makes more sense to
|
|
adaptively dedicate more sampling points for the sharp features
|
|
than the smooth parts.
|
|
|
|
Examples
|
|
--------
|
|
>>> def func(x):
|
|
... '''Function with a sharp peak on a smooth background'''
|
|
... a = 0.001
|
|
... return x + a**2/(a**2 + x**2)
|
|
...
|
|
>>> x, y = sample_function(func, [-1, 1], tol=1e-3)
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> xx = np.linspace(-1, 1, 12000)
|
|
>>> plt.plot(xx, func(xx), '-', x, y[0], '.')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
return _sample_function(func, points, values=None, mask=None, depth=0,
|
|
tol=tol, min_points=min_points, max_level=max_level,
|
|
sample_transform=sample_transform)
|
|
|
|
def _sample_function(func, points, values=None, mask=None, tol=0.05,
|
|
depth=0, min_points=16, max_level=16,
|
|
sample_transform=None):
|
|
points = np.asarray(points)
|
|
|
|
if values is None:
|
|
values = np.atleast_2d(func(points))
|
|
|
|
if mask is None:
|
|
mask = Ellipsis
|
|
|
|
if depth > max_level:
|
|
# recursion limit
|
|
return points, values
|
|
|
|
x_a = points[...,:-1][mask]
|
|
x_b = points[...,1:][mask]
|
|
|
|
x_c = .5*(x_a + x_b)
|
|
y_c = np.atleast_2d(func(x_c))
|
|
|
|
x_2 = np.r_[points, x_c]
|
|
y_2 = np.r_['-1', values, y_c]
|
|
j = np.argsort(x_2)
|
|
|
|
x_2 = x_2[...,j]
|
|
y_2 = y_2[...,j]
|
|
|
|
# -- Determine the intervals at which refinement is necessary
|
|
|
|
if len(x_2) < min_points:
|
|
mask = np.ones([len(x_2)-1], dtype=bool)
|
|
else:
|
|
# represent the data as a path in N dimensions (scaled to unit box)
|
|
if sample_transform is not None:
|
|
y_2_val = sample_transform(x_2, y_2)
|
|
else:
|
|
y_2_val = y_2
|
|
|
|
p = np.r_['0',
|
|
x_2[None,:],
|
|
y_2_val.real.reshape(-1, y_2_val.shape[-1]),
|
|
y_2_val.imag.reshape(-1, y_2_val.shape[-1])
|
|
]
|
|
|
|
sz = (p.shape[0]-1)//2
|
|
|
|
xscale = x_2.ptp(axis=-1)
|
|
yscale = abs(y_2_val.ptp(axis=-1)).ravel()
|
|
|
|
p[0] /= xscale
|
|
p[1:sz+1] /= yscale[:,None]
|
|
p[sz+1:] /= yscale[:,None]
|
|
|
|
# compute the length of each line segment in the path
|
|
dp = np.diff(p, axis=-1)
|
|
s = np.sqrt((dp**2).sum(axis=0))
|
|
s_tot = s.sum()
|
|
|
|
# compute the angle between consecutive line segments
|
|
dp /= s
|
|
dcos = np.arccos(np.clip((dp[:,1:] * dp[:,:-1]).sum(axis=0), -1, 1))
|
|
|
|
# determine where to subdivide: the condition is roughly that
|
|
# the total length of the path (in the scaled data) is computed
|
|
# to accuracy `tol`
|
|
dp_piece = dcos * .5*(s[1:] + s[:-1])
|
|
mask = (dp_piece > tol * s_tot)
|
|
|
|
mask = np.r_[mask, False]
|
|
mask[1:] |= mask[:-1].copy()
|
|
|
|
|
|
# -- Refine, if necessary
|
|
|
|
if mask.any():
|
|
return _sample_function(func, x_2, y_2, mask, tol=tol, depth=depth+1,
|
|
min_points=min_points, max_level=max_level,
|
|
sample_transform=sample_transform)
|
|
else:
|
|
return x_2, y_2
|
|
|
|
|
|
if __name__ == '__main__':
|
|
#plotter()
|
|
x, y = sample_function(func, [a, b], tol=1e-6)
|
|
xx = np.linspace(a, b, 300)
|
|
plt.figure(figsize=((10,10)))
|
|
plt.plot(x, y[0], '-',linewidth=1.5)
|
|
plt.grid()
|
|
plt.savefig("/tmp/plot.png", dpi=400)
|
|
#weightss = np.empty_like(xx)
|
|
#for i in range(len(xx)):
|
|
# if i == 0:
|
|
# weightss[i] = xx[i+1]-x[i]
|
|
# if i == len(xx)-1:
|
|
# weightss[i] = xx[-1]-xx[-2]
|
|
# else:
|
|
# weightss[i] = 0.5*(xx[i+1]-xx[i-1])
|
|
#avg = average(abs(func(xx)))
|
|
#plt.ylim(top=avg, bottom=-1.0*avg)
|