dotfiles/.local/bin/tools/plotter.py

198 lines
5.6 KiB
Python
Raw Normal View History

2020-07-04 14:23:27 +02:00
import matplotlib.pyplot as plt
from numpy import *
import sys
import re
#limits of function:
#put function here
func=lambda x: 1
if(len(sys.argv) == 4):
a_s = sys.argv[2]
b_s = sys.argv[3]
func_string = sys.argv[1]
print("a_s: {}".format(a_s))
print("b_s: {}".format(b_s))
a = float(re.sub("a=", "", a_s))
b = float(re.sub("b=", "", b_s))
N= 1000
def plotter():
x = linspace(a,b, N)
plt.figure(figsize=(10,10))
plt.plot(x,func(x), label=func_string)
#plt.plot(x,g(x), label='g(x)')
plt.legend(loc='best')
plt.grid()
plt.show()
plt.savefig("/tmp/plot.png", dpi=150)
# License: Creative Commons Zero (almost public domain) http://scpyce.org/cc0
import numpy as np
def sample_function(func, points, tol=0.05, min_points=16, max_level=16,
sample_transform=None):
"""
Sample a 1D function to given tolerance by adaptive subdivision.
The result of sampling is a set of points that, if plotted,
produces a smooth curve with also sharp features of the function
resolved.
Parameters
----------
func : callable
Function func(x) of a single argument. It is assumed to be vectorized.
points : array-like, 1D
Initial points to sample, sorted in ascending order.
These will determine also the bounds of sampling.
tol : float, optional
Tolerance to sample to. The condition is roughly that the total
length of the curve on the (x, y) plane is computed up to this
tolerance.
min_point : int, optional
Minimum number of points to sample.
max_level : int, optional
Maximum subdivision depth.
sample_transform : callable, optional
Function w = g(x, y). The x-samples are generated so that w
is sampled.
Returns
-------
x : ndarray
X-coordinates
y : ndarray
Corresponding values of func(x)
Notes
-----
This routine is useful in computing functions that are expensive
to compute, and have sharp features --- it makes more sense to
adaptively dedicate more sampling points for the sharp features
than the smooth parts.
Examples
--------
>>> def func(x):
... '''Function with a sharp peak on a smooth background'''
... a = 0.001
... return x + a**2/(a**2 + x**2)
...
>>> x, y = sample_function(func, [-1, 1], tol=1e-3)
>>> import matplotlib.pyplot as plt
>>> xx = np.linspace(-1, 1, 12000)
>>> plt.plot(xx, func(xx), '-', x, y[0], '.')
>>> plt.show()
"""
return _sample_function(func, points, values=None, mask=None, depth=0,
tol=tol, min_points=min_points, max_level=max_level,
sample_transform=sample_transform)
def _sample_function(func, points, values=None, mask=None, tol=0.05,
depth=0, min_points=16, max_level=16,
sample_transform=None):
points = np.asarray(points)
if values is None:
values = np.atleast_2d(func(points))
if mask is None:
mask = Ellipsis
if depth > max_level:
# recursion limit
return points, values
x_a = points[...,:-1][mask]
x_b = points[...,1:][mask]
x_c = .5*(x_a + x_b)
y_c = np.atleast_2d(func(x_c))
x_2 = np.r_[points, x_c]
y_2 = np.r_['-1', values, y_c]
j = np.argsort(x_2)
x_2 = x_2[...,j]
y_2 = y_2[...,j]
# -- Determine the intervals at which refinement is necessary
if len(x_2) < min_points:
mask = np.ones([len(x_2)-1], dtype=bool)
else:
# represent the data as a path in N dimensions (scaled to unit box)
if sample_transform is not None:
y_2_val = sample_transform(x_2, y_2)
else:
y_2_val = y_2
p = np.r_['0',
x_2[None,:],
y_2_val.real.reshape(-1, y_2_val.shape[-1]),
y_2_val.imag.reshape(-1, y_2_val.shape[-1])
]
sz = (p.shape[0]-1)//2
xscale = x_2.ptp(axis=-1)
yscale = abs(y_2_val.ptp(axis=-1)).ravel()
p[0] /= xscale
p[1:sz+1] /= yscale[:,None]
p[sz+1:] /= yscale[:,None]
# compute the length of each line segment in the path
dp = np.diff(p, axis=-1)
s = np.sqrt((dp**2).sum(axis=0))
s_tot = s.sum()
# compute the angle between consecutive line segments
dp /= s
dcos = np.arccos(np.clip((dp[:,1:] * dp[:,:-1]).sum(axis=0), -1, 1))
# determine where to subdivide: the condition is roughly that
# the total length of the path (in the scaled data) is computed
# to accuracy `tol`
dp_piece = dcos * .5*(s[1:] + s[:-1])
mask = (dp_piece > tol * s_tot)
mask = np.r_[mask, False]
mask[1:] |= mask[:-1].copy()
# -- Refine, if necessary
if mask.any():
return _sample_function(func, x_2, y_2, mask, tol=tol, depth=depth+1,
min_points=min_points, max_level=max_level,
sample_transform=sample_transform)
else:
return x_2, y_2
if __name__ == '__main__':
#plotter()
x, y = sample_function(func, [a, b], tol=1e-6)
xx = np.linspace(a, b, 300)
plt.figure(figsize=((10,10)))
plt.plot(x, y[0], '-',linewidth=1.5)
plt.grid()
plt.savefig("/tmp/plot.png", dpi=400)
#weightss = np.empty_like(xx)
#for i in range(len(xx)):
# if i == 0:
# weightss[i] = xx[i+1]-x[i]
# if i == len(xx)-1:
# weightss[i] = xx[-1]-xx[-2]
# else:
# weightss[i] = 0.5*(xx[i+1]-xx[i-1])
#avg = average(abs(func(xx)))
#plt.ylim(top=avg, bottom=-1.0*avg)