ants/agent.py
2023-05-17 15:57:23 +02:00

203 lines
8.0 KiB
Python

"""
agent.py - Part of ants project
This model implements the actual agents on the grid (a.k.a. the ants)
License: AGPL 3 (see end of file)
(C) Alexander Bocken, Viviane Fahrni, Grace Kagho
"""
import numpy as np
import numpy.typing as npt
from mesa.agent import Agent
from mesa.space import Coordinate
class RandomWalkerAnt(Agent):
def __init__(self, unique_id, model, look_for_chemical=None,
energy_0=1,
chemical_drop_rate_0 : dict[str, float]={"A": 80, "B": 80},
sensitivity_0=0.99,
alpha=0.6, drop_chemical=None,
betas : dict[str, float]={"A": 0.0512, "B": 0.0512},
sensitivity_decay_rate=0.01,
sensitivity_max = 1
) -> None:
super().__init__(unique_id=unique_id, model=model)
self._next_pos : None | Coordinate = None
self.prev_pos : None | Coordinate = None
self.look_for_chemical = look_for_chemical
self.drop_chemical = drop_chemical
self.energy = energy_0 #TODO: use
self.sensitivity_0 = sensitivity_0
self.sensitivity = self.sensitivity_0
self.chemical_drop_rate = chemical_drop_rate_0
self.alpha = alpha
self.sensitivity_max = sensitivity_max
self.sensitivity_decay_rate = sensitivity_decay_rate
self.betas = betas
self.threshold : dict[str, float] = {"A": 1, "B": 1}
def sens_adj(self, props, key) -> npt.NDArray[np.float_] | float:
"""
returns the adjusted value of any property dependent on the current
sensitivity.
The idea is to have a nonlinear response, where any opinion below a
threshold (here: self.threshold[key]) is ignored, otherwise it returns
the property
Long-term this function should be adjusted to return the property up
to a upper threshold as well.
returns ^
|
sens_max| __________
| /
| /
q^tr| /
|
0|________
-----------------------> prop
"""
# if props iterable create array, otherwise return single value
try:
iter(props)
except TypeError:
# TODO: proper nonlinear response, not just clamping
if props > self.sensitivity_max:
return self.sensitivity_max
if props > self.threshold[key]:
return props
else:
return 0
arr : list[float] = []
for prop in props:
arr.append(self.sens_adj(prop, key))
return np.array(arr)
def _choose_next_pos(self):
if self.prev_pos is None:
i = np.random.choice(range(6))
self._next_pos = self.neighbors()[i]
return
if self.searching_food:
for neighbor in self.front_neighbors:
if self.model.grid.is_food(neighbor):
self.drop_chemical = "B"
self.sensitivity = self.sensitivity_0
self.prev_pos = neighbor
self._next_pos = self.pos
elif self.searching_nest:
for neighbor in self.front_neighbors:
if self.model.grid.is_nest(neighbor):
self.look_for_chemical = "A" # Is this a correct interpretation?
self.drop_chemical = "A"
self.sensitivity = self.sensitivity_0
#TODO: Do we flip the ant here or reset prev pos?
# For now, flip ant just like at food
self.prev_pos = neighbor
self._next_pos = self.pos
# recruit new ants
for agent_id in self.model.get_unique_ids(self.model.num_new_recruits):
agent = RandomWalkerAnt(unique_id=agent_id, model=self.model, look_for_chemical="B", drop_chemical="A")
agent._next_pos = self.pos
self.model.schedule.add(agent)
self.model.grid.place_agent(agent, pos=neighbor)
# follow positive gradient
if self.look_for_chemical is not None:
front_concentration = [self.model.grid.fields[self.look_for_chemical][cell] for cell in self.front_neighbors ]
front_concentration = self.sens_adj(front_concentration, self.look_for_chemical)
current_pos_concentration = self.sens_adj(self.model.grid.fields[self.look_for_chemical][self.pos], self.look_for_chemical)
gradient = front_concentration - np.repeat(current_pos_concentration, 3)
index = np.argmax(gradient)
if gradient[index] > 0:
self._next_pos = self.front_neighbors[index]
return
# do biased random walk
p = np.random.uniform()
if p < self.alpha:
self._next_pos = self.front_neighbor
else:
# need copy() as we would otherwise remove the tuple from all possible lists (aka python "magic")
other_neighbors = self.neighbors().copy()
other_neighbors.remove(self.front_neighbor)
random_index = np.random.choice(range(len(other_neighbors)))
self._next_pos = other_neighbors[random_index]
def step(self):
self.sensitivity -= self.sensitivity_decay_rate
self._choose_next_pos()
self._adjust_chemical_drop_rate()
def _adjust_chemical_drop_rate(self):
if(self.drop_chemical is not None):
self.chemical_drop_rate[self.drop_chemical] -= self.chemical_drop_rate[self.drop_chemical] * self.betas[self.drop_chemical]
def drop_chemicals(self) -> None:
# should only be called in advance() as we do not use hidden fields
if self.drop_chemical is not None:
self.model.grid.fields[self.drop_chemical][self.pos] += self.chemical_drop_rate[self.drop_chemical]
def advance(self) -> None:
self.drop_chemicals()
self.prev_pos = self.pos
self.model.grid.move_agent(self, self._next_pos)
# TODO: find out how to decorate with property properly
def neighbors(self, pos=None, include_center=False):
if pos is None:
pos = self.pos
return self.model.grid.get_neighborhood(pos, include_center=include_center)
@property
def searching_nest(self) -> bool:
return self.drop_chemical == "B"
@property
def searching_food(self) -> bool:
return self.drop_chemical == "A"
@property
def front_neighbors(self):
"""
returns all three neighbors which the ant can see
"""
assert(self.prev_pos is not None)
all_neighbors = self.neighbors()
neighbors_at_the_back = self.neighbors(pos=self.prev_pos, include_center=True)
return list(filter(lambda i: i not in neighbors_at_the_back, all_neighbors))
@property
def front_neighbor(self):
"""
returns neighbor of current pos
which is towards the front of the ant
"""
neighbors_prev_pos = self.neighbors(self.prev_pos)
for candidate in self.front_neighbors:
# neighbor in front direction only shares current pos as neighborhood with prev_pos
candidate_neighbors = self.model.grid.get_neighborhood(candidate)
overlap = [x for x in candidate_neighbors if x in neighbors_prev_pos]
if len(overlap) == 1:
return candidate
"""
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, version 3.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
"""