diff --git a/agent.py b/agent.py index 60feeaf..105fcae 100644 --- a/agent.py +++ b/agent.py @@ -113,8 +113,8 @@ class RandomWalkerAnt(Agent): self.energy = self.model.e_0 #now look for other pheromone - self.drop_pheromone = "B" self.look_for_pheromone = "A" + self.drop_pheromone = "B" self._prev_pos = neighbor self._next_pos = self.pos @@ -133,6 +133,7 @@ class RandomWalkerAnt(Agent): self._prev_pos = neighbor self._next_pos = self.pos + self.model.successful_ants += 1 # recruit new ants diff --git a/main.py b/main.py index 448c1be..1d91e90 100755 --- a/main.py +++ b/main.py @@ -187,6 +187,7 @@ def check_ants_follow_gradient(): # main() from model import kwargs_paper_setup1 as kwargs +# kwargs["N_m"] = 10000 model = ActiveWalkerModel(**kwargs) from hexplot import plot_hexagon diff --git a/model.py b/model.py index db2c567..357d95b 100644 --- a/model.py +++ b/model.py @@ -100,6 +100,7 @@ class ActiveWalkerModel(Model): self.q_tr : float = q_tr # threshold under which ant cannot distinguish concentrations self.e_min : float = e_min # energy at which walker dies self.N_f : int = N_f #num food sources + self.successful_ants = 0 # for viviane's graph fields=["A", "B", "nests", "food", "res"] self.schedule = SimultaneousActivation(self) @@ -135,7 +136,7 @@ class ActiveWalkerModel(Model): for _ in range(N_f): self.grid.add_food(food_size) - + # Breadth-first-search algorithm for connectivity #def bfs(graph, start_node, threshold): #graph=grid, start_node=nest, threshold=TBD? @@ -143,7 +144,7 @@ class ActiveWalkerModel(Model): # queue = deque([(start_node, [])]) # paths = {} # connected_food_sources = set() - + # while queue: # current_node, path = queue.popleft() #current_node = tuple(current_node) @@ -154,36 +155,31 @@ class ActiveWalkerModel(Model): # if neighbor not in visited and m.grid.fields["A"] >= threshold: # new_path = path + [neighbor] # queue.append((neighbor, new_path)) - + # Check if the neighbor is a food source # if neighbor in self.grid_food: # if neighbor not in paths: # paths[neighbor] = new_path # connected_food_sources.add(neighbor) - # connectivity = len(connected_food_sources) - - # return connectivity - - - # Calculate connectivity through BFS - - # current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001) - - - - def subset_agent_count(self): - subset_agents = [agent for agent in self.schedule.agents if agent.sensitivity == self.s_0 and agent.look_for_pheromone == "B"] - count = float(len(subset_agents)) - return count + # connectivity = len(connected_food_sources) + + # return connectivity + + + # Calculate connectivity through BFS + + # current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001) + + + - self.datacollector = DataCollector( # model_reporters={"agent_dens": lambda m: m.agent_density()}, model_reporters = {"pheromone_a": lambda m: m.grid.fields["A"], "pheromone_b": lambda m: m.grid.fields["B"], - "alive_ants": lambda m: self.schedule.get_agent_count(), - "sucessful_walkers": lambda m: subset_agent_count(self), + "alive_ants": lambda m: m.schedule.get_agent_count(), + "sucessful_walkers": lambda m: m.successful_ants, #"connectivity": lambda m: check_food_source_connectivity(self.grid_food,current_paths), }, agent_reporters={} @@ -194,7 +190,7 @@ class ActiveWalkerModel(Model): # subset_agents = [agent for agent in self.schedule.agents if agent.sensitivity == self.s_0] # count = float(len(subset_agents)) # return count - + def agent_density(self): a = np.zeros((self.grid.width, self.grid.height)) for i in range(self.grid.width): @@ -230,4 +226,4 @@ This program is free software: you can redistribute it and/or modify it under th This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see -""" \ No newline at end of file +"""