Merge branch 'viviane'
This commit is contained in:
commit
7c19031ca2
7
agent.py
7
agent.py
@ -17,6 +17,7 @@ import numpy.typing as npt
|
|||||||
from mesa.agent import Agent
|
from mesa.agent import Agent
|
||||||
from mesa.space import Coordinate
|
from mesa.space import Coordinate
|
||||||
|
|
||||||
|
|
||||||
class RandomWalkerAnt(Agent):
|
class RandomWalkerAnt(Agent):
|
||||||
def __init__(self, unique_id, model,
|
def __init__(self, unique_id, model,
|
||||||
look_for_pheromone=None,
|
look_for_pheromone=None,
|
||||||
@ -112,8 +113,8 @@ class RandomWalkerAnt(Agent):
|
|||||||
self.energy = self.model.e_0
|
self.energy = self.model.e_0
|
||||||
|
|
||||||
#now look for other pheromone
|
#now look for other pheromone
|
||||||
self.drop_pheromone = "B"
|
|
||||||
self.look_for_pheromone = "A"
|
self.look_for_pheromone = "A"
|
||||||
|
self.drop_pheromone = "B"
|
||||||
|
|
||||||
self._prev_pos = neighbor
|
self._prev_pos = neighbor
|
||||||
self._next_pos = self.pos
|
self._next_pos = self.pos
|
||||||
@ -127,11 +128,13 @@ class RandomWalkerAnt(Agent):
|
|||||||
self.sensitivity = self.model.s_0
|
self.sensitivity = self.model.s_0
|
||||||
self.energy = self.model.e_0
|
self.energy = self.model.e_0
|
||||||
|
|
||||||
self.look_for_pheromone = "A" # Is this a correct interpretation?
|
self.look_for_pheromone = "B"
|
||||||
self.drop_pheromone = "A"
|
self.drop_pheromone = "A"
|
||||||
|
|
||||||
self._prev_pos = neighbor
|
self._prev_pos = neighbor
|
||||||
self._next_pos = self.pos
|
self._next_pos = self.pos
|
||||||
|
self.model.successful_ants += 1
|
||||||
|
|
||||||
|
|
||||||
# recruit new ants
|
# recruit new ants
|
||||||
for agent_id in self.model.get_unique_ids(self.model.N_r):
|
for agent_id in self.model.get_unique_ids(self.model.N_r):
|
||||||
|
95
main.py
95
main.py
@ -1,3 +1,4 @@
|
|||||||
|
|
||||||
#!/bin/python
|
#!/bin/python
|
||||||
"""
|
"""
|
||||||
main.py - Part of ants project
|
main.py - Part of ants project
|
||||||
@ -14,7 +15,7 @@ import matplotlib.pyplot as plt
|
|||||||
from mesa.space import Coordinate
|
from mesa.space import Coordinate
|
||||||
from mesa.datacollection import DataCollector
|
from mesa.datacollection import DataCollector
|
||||||
|
|
||||||
from multihex import MultiHexGrid
|
#from multihex import MultiHexGrid
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
pass
|
pass
|
||||||
@ -186,6 +187,7 @@ def check_ants_follow_gradient():
|
|||||||
# main()
|
# main()
|
||||||
|
|
||||||
from model import kwargs_paper_setup1 as kwargs
|
from model import kwargs_paper_setup1 as kwargs
|
||||||
|
# kwargs["N_m"] = 10000
|
||||||
model = ActiveWalkerModel(**kwargs)
|
model = ActiveWalkerModel(**kwargs)
|
||||||
|
|
||||||
from hexplot import plot_hexagon
|
from hexplot import plot_hexagon
|
||||||
@ -213,3 +215,94 @@ This program is distributed in the hope that it will be useful, but WITHOUT ANY
|
|||||||
|
|
||||||
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
|
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <Z5Ra4Us5kN|y6CRYNrY9x>
|
||||||
|
|
||||||
|
# Access the DataCollector
|
||||||
|
datacollector = model.datacollector
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <y6CRYNrY9x|v2PfrSWbzG>
|
||||||
|
|
||||||
|
# Get the data from the DataCollector
|
||||||
|
model_data = datacollector.get_model_vars_dataframe()
|
||||||
|
|
||||||
|
# |%%--%%| <v2PfrSWbzG|74OaeOltqi>
|
||||||
|
|
||||||
|
print(model_data.columns)
|
||||||
|
|
||||||
|
# |%%--%%| <74OaeOltqi|WpQLCA0RuP>
|
||||||
|
|
||||||
|
# Plot the number of alive ants over time
|
||||||
|
plt.plot(model_data.index, model_data['alive_ants'])
|
||||||
|
plt.xlabel('Time')
|
||||||
|
plt.ylabel('Number of Alive Ants') #this should probably be "active" ants, since it is not considering those in the nest
|
||||||
|
plt.title('Number of Alive Ants Over Time')
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# |%%--%%| <WpQLCA0RuP|UufL3yaROS>
|
||||||
|
|
||||||
|
# Plot the number of sucessful walkers over time
|
||||||
|
plt.plot(model_data.index, model_data['sucessful_walkers'])
|
||||||
|
plt.xlabel('Time')
|
||||||
|
plt.ylabel('Number of Sucessful Walkers')
|
||||||
|
plt.title('Number of Sucessful Walkers Over Time')
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# |%%--%%| <UufL3yaROS|mgJWQ0bqG1>
|
||||||
|
|
||||||
|
# Calculate the cumulative sum
|
||||||
|
model_data['cumulative_sucessful_walkers'] = model_data['sucessful_walkers'].cumsum()
|
||||||
|
|
||||||
|
# Plot the cumulative sum of sucessful walkers over time
|
||||||
|
plt.plot(model_data.index, model_data['cumulative_sucessful_walkers'])
|
||||||
|
plt.xlabel('Time')
|
||||||
|
plt.ylabel('Cumulative Sucessful Walkers')
|
||||||
|
plt.title('Cumulative Sucessful Walkers Over Time')
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Values over 100 are to be interpreted as walkers being sucessfull several times since the total max number of ants is 100
|
||||||
|
|
||||||
|
# |%%--%%| <mgJWQ0bqG1|64kmoHYvCD>
|
||||||
|
|
||||||
|
# Connectivity measure
|
||||||
|
def check_food_source_connectivity(food_sources, paths): #food_sources = nodes.is_nest, paths=result from BFS
|
||||||
|
connected_food_sources = set()
|
||||||
|
|
||||||
|
for source in food_sources:
|
||||||
|
if source in paths:
|
||||||
|
connected_food_sources.add(source)
|
||||||
|
|
||||||
|
connectivity = len(connected_food_sources)
|
||||||
|
|
||||||
|
|
||||||
|
return connectivity
|
||||||
|
|
||||||
|
|
||||||
|
# Calculate connectivity through BFS
|
||||||
|
|
||||||
|
current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001)
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <64kmoHYvCD|JEzmDy4wuX>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <JEzmDy4wuX|U9vmSFZUyD>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <U9vmSFZUyD|r0xVXEqlAh>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# |%%--%%| <r0xVXEqlAh|6K80EwwmVN>
|
||||||
|
50
model.py
50
model.py
@ -15,6 +15,7 @@ from multihex import MultiHexGridScalarFields
|
|||||||
from mesa.time import SimultaneousActivation
|
from mesa.time import SimultaneousActivation
|
||||||
from mesa.datacollection import DataCollector
|
from mesa.datacollection import DataCollector
|
||||||
from agent import RandomWalkerAnt
|
from agent import RandomWalkerAnt
|
||||||
|
from collections import deque
|
||||||
|
|
||||||
kwargs_paper_setup1 = {
|
kwargs_paper_setup1 = {
|
||||||
"width": 100,
|
"width": 100,
|
||||||
@ -62,6 +63,7 @@ kwargs_paper_setup2 = {
|
|||||||
"resistance_map_type" : None,
|
"resistance_map_type" : None,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class ActiveWalkerModel(Model):
|
class ActiveWalkerModel(Model):
|
||||||
def __init__(self, width : int, height : int,
|
def __init__(self, width : int, height : int,
|
||||||
N_0 : int, # number of initial roamers
|
N_0 : int, # number of initial roamers
|
||||||
@ -98,6 +100,7 @@ class ActiveWalkerModel(Model):
|
|||||||
self.q_tr : float = q_tr # threshold under which ant cannot distinguish concentrations
|
self.q_tr : float = q_tr # threshold under which ant cannot distinguish concentrations
|
||||||
self.e_min : float = e_min # energy at which walker dies
|
self.e_min : float = e_min # energy at which walker dies
|
||||||
self.N_f : int = N_f #num food sources
|
self.N_f : int = N_f #num food sources
|
||||||
|
self.successful_ants = 0 # for viviane's graph
|
||||||
|
|
||||||
fields=["A", "B", "nests", "food", "res"]
|
fields=["A", "B", "nests", "food", "res"]
|
||||||
self.schedule = SimultaneousActivation(self)
|
self.schedule = SimultaneousActivation(self)
|
||||||
@ -120,8 +123,6 @@ class ActiveWalkerModel(Model):
|
|||||||
raise NotImplemented(f"{resistance_map_type=} is not implemented.")
|
raise NotImplemented(f"{resistance_map_type=} is not implemented.")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
self._unique_id_counter = -1
|
self._unique_id_counter = -1
|
||||||
|
|
||||||
self.max_steps = max_steps
|
self.max_steps = max_steps
|
||||||
@ -136,15 +137,60 @@ class ActiveWalkerModel(Model):
|
|||||||
for _ in range(N_f):
|
for _ in range(N_f):
|
||||||
self.grid.add_food(food_size)
|
self.grid.add_food(food_size)
|
||||||
|
|
||||||
|
|
||||||
|
# Breadth-first-search algorithm for connectivity
|
||||||
|
#def bfs(graph, start_node, threshold): #graph=grid, start_node=nest, threshold=TBD?
|
||||||
|
# visited = set()
|
||||||
|
# queue = deque([(start_node, [])])
|
||||||
|
# paths = {}
|
||||||
|
# connected_food_sources = set()
|
||||||
|
|
||||||
|
# while queue:
|
||||||
|
# current_node, path = queue.popleft()
|
||||||
|
#current_node = tuple(current_node)
|
||||||
|
# visited.add(current_node)
|
||||||
|
|
||||||
|
# if current_node in graph:
|
||||||
|
# for neighbor, m.grid.fields["A"] in graph[current_node].items():
|
||||||
|
# if neighbor not in visited and m.grid.fields["A"] >= threshold:
|
||||||
|
# new_path = path + [neighbor]
|
||||||
|
# queue.append((neighbor, new_path))
|
||||||
|
|
||||||
|
# Check if the neighbor is a food source
|
||||||
|
# if neighbor in self.grid_food:
|
||||||
|
# if neighbor not in paths:
|
||||||
|
# paths[neighbor] = new_path
|
||||||
|
# connected_food_sources.add(neighbor)
|
||||||
|
|
||||||
|
# connectivity = len(connected_food_sources)
|
||||||
|
|
||||||
|
# return connectivity
|
||||||
|
|
||||||
|
|
||||||
|
# Calculate connectivity through BFS
|
||||||
|
|
||||||
|
# current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
self.datacollector = DataCollector(
|
self.datacollector = DataCollector(
|
||||||
# model_reporters={"agent_dens": lambda m: m.agent_density()},
|
# model_reporters={"agent_dens": lambda m: m.agent_density()},
|
||||||
model_reporters = {"pheromone_a": lambda m: m.grid.fields["A"],
|
model_reporters = {"pheromone_a": lambda m: m.grid.fields["A"],
|
||||||
"pheromone_b": lambda m: m.grid.fields["B"],
|
"pheromone_b": lambda m: m.grid.fields["B"],
|
||||||
|
"alive_ants": lambda m: m.schedule.get_agent_count(),
|
||||||
|
"sucessful_walkers": lambda m: m.successful_ants,
|
||||||
|
#"connectivity": lambda m: check_food_source_connectivity(self.grid_food,current_paths),
|
||||||
},
|
},
|
||||||
agent_reporters={}
|
agent_reporters={}
|
||||||
)
|
)
|
||||||
self.datacollector.collect(self) # keep at end of __init___
|
self.datacollector.collect(self) # keep at end of __init___
|
||||||
|
|
||||||
|
#def subset_agent_count(self):
|
||||||
|
# subset_agents = [agent for agent in self.schedule.agents if agent.sensitivity == self.s_0]
|
||||||
|
# count = float(len(subset_agents))
|
||||||
|
# return count
|
||||||
|
|
||||||
def agent_density(self):
|
def agent_density(self):
|
||||||
a = np.zeros((self.grid.width, self.grid.height))
|
a = np.zeros((self.grid.width, self.grid.height))
|
||||||
for i in range(self.grid.width):
|
for i in range(self.grid.width):
|
||||||
|
Loading…
Reference in New Issue
Block a user