vivianes changes
This commit is contained in:
parent
8f2771463d
commit
15efd64c3e
4
agent.py
4
agent.py
@ -17,6 +17,7 @@ import numpy.typing as npt
|
||||
from mesa.agent import Agent
|
||||
from mesa.space import Coordinate
|
||||
|
||||
|
||||
class RandomWalkerAnt(Agent):
|
||||
def __init__(self, unique_id, model,
|
||||
look_for_pheromone=None,
|
||||
@ -127,12 +128,13 @@ class RandomWalkerAnt(Agent):
|
||||
self.sensitivity = self.model.s_0
|
||||
self.energy = self.model.e_0
|
||||
|
||||
self.look_for_pheromone = "A" # Is this a correct interpretation?
|
||||
self.look_for_pheromone = "B"
|
||||
self.drop_pheromone = "A"
|
||||
|
||||
self._prev_pos = neighbor
|
||||
self._next_pos = self.pos
|
||||
|
||||
|
||||
# recruit new ants
|
||||
for agent_id in self.model.get_unique_ids(self.model.N_r):
|
||||
if self.model.schedule.get_agent_count() < self.model.N_m:
|
||||
|
96
main.py
Executable file → Normal file
96
main.py
Executable file → Normal file
@ -1,3 +1,4 @@
|
||||
|
||||
#!/bin/python
|
||||
"""
|
||||
main.py - Part of ants project
|
||||
@ -14,7 +15,7 @@ import matplotlib.pyplot as plt
|
||||
from mesa.space import Coordinate
|
||||
from mesa.datacollection import DataCollector
|
||||
|
||||
from multihex import MultiHexGrid
|
||||
#from multihex import MultiHexGrid
|
||||
|
||||
def main():
|
||||
pass
|
||||
@ -213,3 +214,96 @@ This program is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
|
||||
"""
|
||||
|
||||
|
||||
|
||||
# |%%--%%| <Z5Ra4Us5kN|y6CRYNrY9x>
|
||||
|
||||
# Access the DataCollector
|
||||
datacollector = model.datacollector
|
||||
|
||||
|
||||
# |%%--%%| <y6CRYNrY9x|v2PfrSWbzG>
|
||||
|
||||
# Get the data from the DataCollector
|
||||
model_data = datacollector.get_model_vars_dataframe()
|
||||
|
||||
# |%%--%%| <v2PfrSWbzG|74OaeOltqi>
|
||||
|
||||
print(model_data.columns)
|
||||
|
||||
# |%%--%%| <74OaeOltqi|WpQLCA0RuP>
|
||||
|
||||
# Plot the number of alive ants over time
|
||||
plt.plot(model_data.index, model_data['alive_ants'])
|
||||
plt.xlabel('Time')
|
||||
plt.ylabel('Number of Alive Ants') #this should probably be "active" ants, since it is not considering those in the nest
|
||||
plt.title('Number of Alive Ants Over Time')
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
# |%%--%%| <WpQLCA0RuP|UufL3yaROS>
|
||||
|
||||
# Plot the number of sucessful walkers over time
|
||||
plt.plot(model_data.index, model_data['sucessful_walkers'])
|
||||
plt.xlabel('Time')
|
||||
plt.ylabel('Number of Sucessful Walkers')
|
||||
plt.title('Number of Sucessful Walkers Over Time')
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
# |%%--%%| <UufL3yaROS|mgJWQ0bqG1>
|
||||
|
||||
# Calculate the cumulative sum
|
||||
model_data['cumulative_sucessful_walkers'] = model_data['sucessful_walkers'].cumsum()
|
||||
|
||||
# Plot the cumulative sum of sucessful walkers over time
|
||||
plt.plot(model_data.index, model_data['cumulative_sucessful_walkers'])
|
||||
plt.xlabel('Time')
|
||||
plt.ylabel('Cumulative Sucessful Walkers')
|
||||
plt.title('Cumulative Sucessful Walkers Over Time')
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
# Values over 100 are to be interpreted as walkers being sucessfull several times since the total max number of ants is 100
|
||||
|
||||
# |%%--%%| <mgJWQ0bqG1|64kmoHYvCD>
|
||||
|
||||
# Connectivity measure
|
||||
def check_food_source_connectivity(food_sources, paths): #food_sources = nodes.is_nest, paths=result from BFS
|
||||
connected_food_sources = set()
|
||||
|
||||
for source in food_sources:
|
||||
if source in paths:
|
||||
connected_food_sources.add(source)
|
||||
|
||||
connectivity = len(connected_food_sources)
|
||||
|
||||
|
||||
return connectivity
|
||||
|
||||
|
||||
# Calculate connectivity through BFS
|
||||
|
||||
current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001)
|
||||
|
||||
|
||||
# |%%--%%| <64kmoHYvCD|JEzmDy4wuX>
|
||||
|
||||
|
||||
|
||||
# |%%--%%| <JEzmDy4wuX|U9vmSFZUyD>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# |%%--%%| <U9vmSFZUyD|r0xVXEqlAh>
|
||||
|
||||
|
||||
|
||||
# |%%--%%| <r0xVXEqlAh|6K80EwwmVN>
|
||||
|
||||
|
||||
|
56
model.py
56
model.py
@ -15,6 +15,7 @@ from multihex import MultiHexGridScalarFields
|
||||
from mesa.time import SimultaneousActivation
|
||||
from mesa.datacollection import DataCollector
|
||||
from agent import RandomWalkerAnt
|
||||
from collections import deque
|
||||
|
||||
kwargs_paper_setup1 = {
|
||||
"width": 100,
|
||||
@ -62,6 +63,7 @@ kwargs_paper_setup2 = {
|
||||
"resistance_map_type" : None,
|
||||
}
|
||||
|
||||
|
||||
class ActiveWalkerModel(Model):
|
||||
def __init__(self, width : int, height : int,
|
||||
N_0 : int, # number of initial roamers
|
||||
@ -120,8 +122,6 @@ class ActiveWalkerModel(Model):
|
||||
raise NotImplemented(f"{resistance_map_type=} is not implemented.")
|
||||
|
||||
|
||||
|
||||
|
||||
self._unique_id_counter = -1
|
||||
|
||||
self.max_steps = max_steps
|
||||
@ -135,16 +135,66 @@ class ActiveWalkerModel(Model):
|
||||
|
||||
for _ in range(N_f):
|
||||
self.grid.add_food(food_size)
|
||||
|
||||
|
||||
# Breadth-first-search algorithm for connectivity
|
||||
#def bfs(graph, start_node, threshold): #graph=grid, start_node=nest, threshold=TBD?
|
||||
# visited = set()
|
||||
# queue = deque([(start_node, [])])
|
||||
# paths = {}
|
||||
# connected_food_sources = set()
|
||||
|
||||
# while queue:
|
||||
# current_node, path = queue.popleft()
|
||||
#current_node = tuple(current_node)
|
||||
# visited.add(current_node)
|
||||
|
||||
# if current_node in graph:
|
||||
# for neighbor, m.grid.fields["A"] in graph[current_node].items():
|
||||
# if neighbor not in visited and m.grid.fields["A"] >= threshold:
|
||||
# new_path = path + [neighbor]
|
||||
# queue.append((neighbor, new_path))
|
||||
|
||||
# Check if the neighbor is a food source
|
||||
# if neighbor in self.grid_food:
|
||||
# if neighbor not in paths:
|
||||
# paths[neighbor] = new_path
|
||||
# connected_food_sources.add(neighbor)
|
||||
|
||||
# connectivity = len(connected_food_sources)
|
||||
|
||||
# return connectivity
|
||||
|
||||
|
||||
# Calculate connectivity through BFS
|
||||
|
||||
# current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001)
|
||||
|
||||
|
||||
|
||||
def subset_agent_count(self):
|
||||
subset_agents = [agent for agent in self.schedule.agents if agent.sensitivity == self.s_0 and agent.look_for_pheromone == "B"]
|
||||
count = float(len(subset_agents))
|
||||
return count
|
||||
|
||||
|
||||
self.datacollector = DataCollector(
|
||||
# model_reporters={"agent_dens": lambda m: m.agent_density()},
|
||||
model_reporters = {"pheromone_a": lambda m: m.grid.fields["A"],
|
||||
"pheromone_b": lambda m: m.grid.fields["B"],
|
||||
"alive_ants": lambda m: self.schedule.get_agent_count(),
|
||||
"sucessful_walkers": lambda m: subset_agent_count(self),
|
||||
#"connectivity": lambda m: check_food_source_connectivity(self.grid_food,current_paths),
|
||||
},
|
||||
agent_reporters={}
|
||||
)
|
||||
self.datacollector.collect(self) # keep at end of __init___
|
||||
|
||||
#def subset_agent_count(self):
|
||||
# subset_agents = [agent for agent in self.schedule.agents if agent.sensitivity == self.s_0]
|
||||
# count = float(len(subset_agents))
|
||||
# return count
|
||||
|
||||
def agent_density(self):
|
||||
a = np.zeros((self.grid.width, self.grid.height))
|
||||
for i in range(self.grid.width):
|
||||
@ -180,4 +230,4 @@ This program is free software: you can redistribute it and/or modify it under th
|
||||
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
|
||||
"""
|
||||
"""
|
Loading…
Reference in New Issue
Block a user