ants/model.py

228 lines
9.4 KiB
Python
Raw Normal View History

2023-04-26 23:45:14 +02:00
"""
model.py - Part of ants project
This file implements the mesa model on which our ActiveRandomWalkerAnts
will act
License: AGPL 3 (see end of file)
2023-05-17 15:57:23 +02:00
(C) Alexander Bocken, Viviane Fahrni, Grace Kagho
2023-04-26 23:45:14 +02:00
"""
import numpy as np
from mesa.model import Model
from mesa.space import Coordinate, HexGrid, Iterable
from multihex import MultiHexGridScalarFields
2023-04-26 23:45:14 +02:00
from mesa.time import SimultaneousActivation
from mesa.datacollection import DataCollector
from agent import RandomWalkerAnt
kwargs_paper_setup1 = {
"width": 100,
"height": 100,
"N_0": 20,
"N_m": 100,
"N_r": 5,
"alpha": 0.6,
"gamma": 0.001,
"beta": 0.0512,
"d_s": 0.001,
"d_e": 0.001,
"s_0": 0.99,
"e_0": 0.99,
"q_0": 80,
"q_tr": 1,
"e_min": 0,
"nest_position": (49,49),
"N_f": 5,
"food_size" : 55,
"max_steps": 8000,
"resistance_map_type" : None,
}
kwargs_paper_setup2 = {
"width": 100,
"height": 100,
"N_0": 20,
"N_m": 100,
"N_r": 5,
"alpha": 0.6,
"gamma": 0.01,
"beta": 0.0512,
"d_s": 0.001,
"d_e": 0.001,
"s_0": 0.99,
"e_0": 0.99,
"q_0": 80,
"q_tr": 1,
"e_min": 0,
"nest_position": (49,49),
"N_f": 5,
"food_size" : 550,
"max_steps": 8000,
"resistance_map_type" : None,
}
2023-06-26 10:23:19 +02:00
2023-04-26 23:45:14 +02:00
class ActiveWalkerModel(Model):
def __init__(self, width : int, height : int,
N_0 : int, # number of initial roamers
N_m : int, # max number of ants
N_r : int, # number of new recruits
alpha : float, #biased random walk
beta : float, # decay rate drop rate
gamma : float, # decay rate pheromone concentration fields
d_s : float, # decay rate sensitvity
d_e : float, # decay rate energy
s_0 : float, # sensitvity reset
e_0 : float, # energy reset
q_0 : float, # initial pheromone level
q_tr : float, # threshold under which ant cannot distinguish concentrations
e_min : float, # energy at which walker dies
2023-04-26 23:45:14 +02:00
nest_position : Coordinate,
N_f=5, #num food sources
food_size= 55,
max_steps:int=1000,
resistance_map_type=None,
) -> None:
2023-04-26 23:45:14 +02:00
super().__init__()
self.N_m : int = N_m # max number of ants
self.N_r : int = N_r # number of new recruits
self.alpha : float = alpha # biased random walk if no gradient
self.gamma : float = gamma # decay rate pheromone concentration fields
self.beta : float = beta # decay rate drop rate
self.d_s : float = d_s # decay rate sensitvity
self.d_e : float = d_e # decay rate energy (get's multiplied with resistance)
self.s_0 : float = s_0 # sensitvity reset
self.e_0 : float = e_0 # energy reset
self.q_0 : float = q_0 # pheromone drop rate reset
self.q_tr : float = q_tr # threshold under which ant cannot distinguish concentrations
self.e_min : float = e_min # energy at which walker dies
self.N_f : int = N_f #num food sources
self.successful_ants = 0 # for viviane's graph
2023-06-27 22:24:40 +02:00
self.connectivity = 0 # for viviane's persistence
fields=["A", "B", "nests", "food", "res"]
2023-04-26 23:45:14 +02:00
self.schedule = SimultaneousActivation(self)
2023-04-28 14:45:56 +02:00
self.grid = MultiHexGridScalarFields(width=width, height=height, torus=True, fields=fields)
if resistance_map_type is None:
self.grid.fields["res"] = np.ones((width, height)).astype(float)
elif resistance_map_type == "perlin":
# perlin generates anisotropic noise which may or may not be a good choice
# pip3 install git+https://github.com/pvigier/perlin-numpy
from perlin_numpy import (
generate_fractal_noise_2d,
generate_perlin_noise_2d,
)
noise = generate_perlin_noise_2d(shape=(width,height), res=((10,10)))
# normalized to mean=1, min=0, and max=2
normalized_noise = (noise - np.min(noise))/(np.max(noise) - np.min(noise)) * 2
self.grid.fields["res"] = normalized_noise
else:
# possible other noise types: simplex or value
raise NotImplemented(f"{resistance_map_type=} is not implemented.")
2023-04-28 14:45:56 +02:00
self._unique_id_counter = -1
2023-04-26 23:45:14 +02:00
self.max_steps = max_steps
self.grid.add_nest(nest_position)
2023-04-28 14:45:56 +02:00
for agent_id in self.get_unique_ids(N_0):
if self.schedule.get_agent_count() < self.N_m:
2023-05-18 12:46:48 +02:00
agent = RandomWalkerAnt(unique_id=agent_id, model=self, look_for_pheromone="A", drop_pheromone="A")
self.schedule.add(agent)
self.grid.place_agent(agent, pos=nest_position)
2023-04-26 23:45:14 +02:00
for _ in range(N_f):
self.grid.add_food(food_size)
2023-04-26 23:45:14 +02:00
self.datacollector = DataCollector(
# model_reporters={"agent_dens": lambda m: m.agent_density()},
model_reporters = {"pheromone_a": lambda m: m.grid.fields["A"],
"pheromone_b": lambda m: m.grid.fields["B"],
"alive_ants": lambda m: m.schedule.get_agent_count(),
"sucessful_walkers": lambda m: m.successful_ants,
2023-06-27 22:24:40 +02:00
"connectivity": lambda m: m.connectivity,
},
2023-04-26 23:45:14 +02:00
agent_reporters={}
)
self.datacollector.collect(self) # keep at end of __init___
2023-06-27 22:45:40 +02:00
# Breadth-first-search algorithm for connectivity
# TODO: Implement pheromone B (take max of the two or sum?)
# alex: what's to say against max?
def bfs(self):
threshold = 0.0000001 #the value of A
connectivity = 0 #initial value of connectivity
connected_food_sources = list() #empty list of connected food sources
visited = list() #empty list of visited (by the algorithm) nodes
nest = np.argwhere(self.grid.fields["nests"] == 1) #get nest location
nest = nest[0].tolist() #transforming not to have type errors
nest = tuple(nest) #transforming not to have type errors
start_node = nest #rename
neighbours_to_check = list([start_node]) #start node gets checked first
neighbours_to_check = neighbours_to_check + self.grid.get_neighborhood(start_node) #start node neighbours get added to the to check list
while neighbours_to_check: #as long as there is something on the to check list
current_node = neighbours_to_check[0] #the first list entry is taken
del neighbours_to_check[0] #and deleted on the to check list
if current_node not in visited: #if it has not previously been checked
if self.grid.fields["A"][current_node] >= threshold: #and its A value is above our threshold
new_neighbors = self.grid.get_neighborhood(current_node) #then we get its neighbours
if new_neighbors not in visited: #if they have not yet been visited
neighbours_to_check = neighbours_to_check + new_neighbors #then they are also added to our to check list
visited = visited + list([current_node]) #and the current node has now been checked
neighbours_to_check = list(dict.fromkeys(neighbours_to_check)) #only check nodes once (unique values)
if self.grid.fields["food"][current_node] > 0: #in case the node we check is food
connectivity += 1 #then we have found a connected path to a food source
connected_food_sources = connected_food_sources + list([current_node]) #and it is added to the list of connected food sources
# why not normalize to 0-1 ?
return connectivity #we want the connectivity (0-5)
def agent_density(self):
a = np.zeros((self.grid.width, self.grid.height))
for i in range(self.grid.width):
for j in range(self.grid.height):
a[i,j] = len(self.grid[(i,j)])
return a
2023-04-28 14:45:56 +02:00
2023-04-26 23:45:14 +02:00
def step(self):
2023-04-28 14:45:56 +02:00
self.schedule.step() # step() and advance() all agents
2023-06-27 22:45:40 +02:00
self.connectivity = self.bfs(self)
2023-04-28 14:45:56 +02:00
# apply decay rate on pheromone levels
for key in ("A", "B"):
field = self.grid.fields[key]
self.grid.fields[key] = field - self.gamma*field
2023-04-28 14:45:56 +02:00
2023-06-27 22:45:40 +02:00
2023-04-26 23:45:14 +02:00
self.datacollector.collect(self)
if self.schedule.steps >= self.max_steps:
self.running = False
def get_unique_id(self) -> int:
self._unique_id_counter += 1
return self._unique_id_counter
def get_unique_ids(self, num_ids : int):
for _ in range(num_ids):
yield self.get_unique_id()
"""
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, version 3.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
"""