2023-06-26 10:23:19 +02:00
|
|
|
|
2023-04-26 23:45:14 +02:00
|
|
|
#!/bin/python
|
|
|
|
"""
|
|
|
|
main.py - Part of ants project
|
|
|
|
execute via `python main.py` in terminal or only UNIX: `./main.py`
|
|
|
|
|
|
|
|
License: AGPL 3 (see end of file)
|
2023-05-17 15:57:23 +02:00
|
|
|
(C) Alexander Bocken, Viviane Fahrni, Grace Kagho
|
2023-04-26 23:45:14 +02:00
|
|
|
"""
|
2023-06-20 15:00:14 +02:00
|
|
|
import array
|
2023-04-26 23:45:14 +02:00
|
|
|
from model import ActiveWalkerModel
|
|
|
|
from agent import RandomWalkerAnt
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from mesa.space import Coordinate
|
2023-05-18 12:46:48 +02:00
|
|
|
from mesa.datacollection import DataCollector
|
2023-04-26 23:45:14 +02:00
|
|
|
|
2023-06-26 10:23:19 +02:00
|
|
|
#from multihex import MultiHexGrid
|
2023-05-18 16:00:43 +02:00
|
|
|
|
2023-04-26 23:45:14 +02:00
|
|
|
def main():
|
2023-06-20 15:00:14 +02:00
|
|
|
pass
|
|
|
|
# check_pheromone_exponential_decay()
|
|
|
|
# check_ant_sensitivity_linear_decay()
|
|
|
|
# check_ant_pheromone_exponential_decay()
|
|
|
|
# check_ants_follow_gradient()
|
2023-05-17 18:09:26 +02:00
|
|
|
|
|
|
|
def check_pheromone_exponential_decay():
|
|
|
|
"""
|
|
|
|
Check whether wanted exponential decay of pheromones on grid is done correctly
|
|
|
|
shows plot of pheromone placed on grid vs. equivalent exponential decay function
|
|
|
|
"""
|
2023-04-26 23:45:14 +02:00
|
|
|
width = 21
|
|
|
|
height = width
|
2023-05-17 18:09:26 +02:00
|
|
|
num_initial_roamers = 0
|
|
|
|
num_max_agents = 100
|
|
|
|
nest_position : Coordinate = (width //2, height //2)
|
|
|
|
max_steps = 1000
|
|
|
|
|
|
|
|
model = ActiveWalkerModel(width=width, height=height,
|
|
|
|
num_initial_roamers=num_initial_roamers,
|
|
|
|
nest_position=nest_position,
|
|
|
|
num_max_agents=num_max_agents,
|
|
|
|
max_steps=max_steps)
|
|
|
|
|
|
|
|
model.grid.fields["A"][5,5] = 10
|
|
|
|
model.datacollector = DataCollector(
|
|
|
|
model_reporters={"pheromone_a": lambda m: m.grid.fields["A"][5,5] },
|
|
|
|
agent_reporters={}
|
|
|
|
)
|
|
|
|
model.run_model()
|
|
|
|
a_test = model.datacollector.get_model_vars_dataframe()["pheromone_a"]
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
xx = np.linspace(0,1000, 10000)
|
|
|
|
yy = a_test[0]*np.exp(-model.decay_rates["A"]*xx)
|
|
|
|
plt.plot(xx, yy, label="correct exponential function")
|
|
|
|
plt.scatter(range(len(a_test)), a_test, label="modeled decay", marker='o')
|
|
|
|
plt.title("Exponential grid pheromone decay test")
|
|
|
|
plt.legend(loc='best')
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
def check_ant_sensitivity_linear_decay():
|
|
|
|
"""
|
|
|
|
Check whether wanted linear decay of ant sensitivity is done correctly
|
|
|
|
shows plot of ant sensitivity placed on grid vs. equivalent linear decay function
|
|
|
|
not food sources are on the grid for this run to not reset sensitivities
|
|
|
|
"""
|
|
|
|
width = 50
|
|
|
|
height = width
|
|
|
|
num_initial_roamers = 1
|
2023-04-26 23:45:14 +02:00
|
|
|
num_max_agents = 100
|
|
|
|
nest_position : Coordinate = (width //2, height //2)
|
2023-05-17 18:09:26 +02:00
|
|
|
max_steps = 1000
|
|
|
|
num_food_sources = 0
|
2023-04-26 23:45:14 +02:00
|
|
|
|
|
|
|
model = ActiveWalkerModel(width=width, height=height,
|
|
|
|
num_initial_roamers=num_initial_roamers,
|
|
|
|
nest_position=nest_position,
|
|
|
|
num_max_agents=num_max_agents,
|
2023-05-17 18:09:26 +02:00
|
|
|
num_food_sources=num_food_sources,
|
2023-04-26 23:45:14 +02:00
|
|
|
max_steps=max_steps)
|
|
|
|
|
2023-05-17 18:09:26 +02:00
|
|
|
model.datacollector = DataCollector(
|
|
|
|
model_reporters={},
|
|
|
|
agent_reporters={"sensitivity": lambda a: a.sensitivity}
|
|
|
|
)
|
|
|
|
start = model.schedule.agents[0].sensitivity_decay_rate
|
|
|
|
model.run_model()
|
|
|
|
a_test = model.datacollector.get_agent_vars_dataframe().reset_index()["sensitivity"]
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
xx = np.linspace(0,1000, 10000)
|
|
|
|
yy = a_test[0] - start*xx
|
|
|
|
plt.title("Linear Ant Sensitivity decay test")
|
|
|
|
plt.plot(xx, yy, label="correct linear function")
|
|
|
|
plt.scatter(range(len(a_test)), a_test, label="modeled decay", marker='o')
|
|
|
|
plt.legend(loc='best')
|
|
|
|
|
|
|
|
plt.show()
|
2023-04-26 23:45:14 +02:00
|
|
|
|
2023-05-17 19:32:08 +02:00
|
|
|
def check_ant_pheromone_exponential_decay():
|
|
|
|
"""
|
|
|
|
Check whether wanted exponential decay of pheromone drop rate for ants is correctly modeled
|
|
|
|
shows plot of pheromone placed on grid vs. equivalent exponential decay function
|
|
|
|
"""
|
|
|
|
width = 50
|
|
|
|
height = width
|
|
|
|
num_initial_roamers = 1
|
|
|
|
num_max_agents = 100
|
|
|
|
nest_position : Coordinate = (width //2, height //2)
|
2023-06-20 15:00:14 +02:00
|
|
|
num_food_sources = 0;
|
2023-05-17 19:32:08 +02:00
|
|
|
max_steps = 1000
|
|
|
|
|
|
|
|
model = ActiveWalkerModel(width=width, height=height,
|
|
|
|
num_initial_roamers=num_initial_roamers,
|
|
|
|
nest_position=nest_position,
|
|
|
|
num_max_agents=num_max_agents,
|
|
|
|
max_steps=max_steps)
|
|
|
|
|
|
|
|
|
|
|
|
model.datacollector = DataCollector(
|
|
|
|
model_reporters={},
|
|
|
|
agent_reporters={"pheromone_drop_rate": lambda a: a.pheromone_drop_rate["A"]}
|
|
|
|
)
|
|
|
|
start = model.schedule.agents[0].pheromone_drop_rate["A"]
|
|
|
|
model.run_model()
|
|
|
|
a_test = model.datacollector.get_agent_vars_dataframe().reset_index()["pheromone_drop_rate"]
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
xx = np.linspace(0,1000, 10000)
|
|
|
|
yy = a_test[0]*np.exp(-model.schedule.agents[0].betas["A"]*xx)
|
|
|
|
plt.plot(xx, yy, label="correct exponential function")
|
|
|
|
plt.scatter(range(len(a_test)), a_test, label="modeled decay", marker='o')
|
|
|
|
plt.title("Exponential pheromone drop rate decay test")
|
|
|
|
plt.legend(loc='best')
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
2023-05-18 16:00:43 +02:00
|
|
|
def check_ants_follow_gradient():
|
|
|
|
"""
|
|
|
|
Create a path of neighbours with a static gradient.
|
|
|
|
Observe whether ant correctly follows gradient once found. via matrix printouts
|
|
|
|
8 = ant
|
|
|
|
anything else: pheromone A density.
|
|
|
|
The ant does not drop any new pheromones for this test
|
|
|
|
"""
|
|
|
|
width, height = 20,20
|
|
|
|
params = {
|
|
|
|
"width": width, "height": height,
|
|
|
|
"num_max_agents": 1,
|
|
|
|
"num_food_sources": 0,
|
|
|
|
"nest_position": (10,10),
|
|
|
|
"num_initial_roamers": 1,
|
|
|
|
}
|
|
|
|
model = ActiveWalkerModel(**params)
|
|
|
|
def place_line(grid : MultiHexGrid, start_pos=None):
|
|
|
|
strength = 5
|
|
|
|
if start_pos is None:
|
|
|
|
start_pos = (9,9)
|
|
|
|
next_pos = start_pos
|
|
|
|
for _ in range(width):
|
|
|
|
grid.fields["A"][next_pos] = strength
|
|
|
|
strength += 0.01
|
|
|
|
next_pos = grid.get_neighborhood(next_pos)[0]
|
|
|
|
|
|
|
|
place_line(model.grid)
|
|
|
|
|
|
|
|
ant = model.schedule._agents[0]
|
|
|
|
ant.looking_for_pheromone = "A"
|
|
|
|
ant.drop_pheromone = None
|
|
|
|
ant.threshold["A"] = 0
|
|
|
|
ant.sensitivity_max = 100
|
|
|
|
#model.grid.fields["A"] = np.diag(np.ones(width))
|
|
|
|
model.decay_rates["A"] = 0
|
|
|
|
|
|
|
|
while model.schedule.steps < 100:
|
|
|
|
display_field = np.copy(model.grid.fields["A"])
|
|
|
|
display_field[ant.pos] = 8
|
|
|
|
print(display_field)
|
|
|
|
print(20*"#")
|
|
|
|
model.step()
|
|
|
|
|
|
|
|
|
2023-06-20 15:00:14 +02:00
|
|
|
# if __name__ == "__main__":
|
|
|
|
# main()
|
|
|
|
|
|
|
|
from model import kwargs_paper_setup1 as kwargs
|
2023-06-26 10:55:23 +02:00
|
|
|
# kwargs["N_m"] = 10000
|
2023-06-20 15:00:14 +02:00
|
|
|
model = ActiveWalkerModel(**kwargs)
|
|
|
|
|
|
|
|
from hexplot import plot_hexagon
|
|
|
|
# a = np.zeros_like(model.grid.fields['food'])
|
|
|
|
# a[np.nonzero(model.grid.fields['food'])] = 1
|
|
|
|
# plot_hexagon(a, title="Nest locations")
|
|
|
|
# plot_hexagon(model.grid.fields['res'], title="Resistance Map")
|
|
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm as progress_bar
|
|
|
|
for _ in progress_bar(range(model.max_steps)):
|
|
|
|
model.step()
|
|
|
|
# agent_densities = model.datacollector.get_model_vars_dataframe()["agent_dens"]
|
|
|
|
# mean_dens = np.mean(agent_densities)
|
|
|
|
# norm_dens = mean_dens/np.max(mean_dens)
|
|
|
|
# plot_hexagon(norm_dens, title="Ant density overall")
|
|
|
|
# plt.show()
|
2023-04-26 23:45:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, version 3.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>
|
|
|
|
"""
|
2023-06-26 10:23:19 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# |%%--%%| <Z5Ra4Us5kN|y6CRYNrY9x>
|
|
|
|
|
|
|
|
# Access the DataCollector
|
|
|
|
datacollector = model.datacollector
|
|
|
|
|
|
|
|
|
|
|
|
# |%%--%%| <y6CRYNrY9x|v2PfrSWbzG>
|
|
|
|
|
|
|
|
# Get the data from the DataCollector
|
|
|
|
model_data = datacollector.get_model_vars_dataframe()
|
|
|
|
|
|
|
|
# |%%--%%| <v2PfrSWbzG|74OaeOltqi>
|
|
|
|
|
|
|
|
print(model_data.columns)
|
|
|
|
|
|
|
|
# |%%--%%| <74OaeOltqi|WpQLCA0RuP>
|
|
|
|
|
|
|
|
# Plot the number of alive ants over time
|
|
|
|
plt.plot(model_data.index, model_data['alive_ants'])
|
|
|
|
plt.xlabel('Time')
|
|
|
|
plt.ylabel('Number of Alive Ants') #this should probably be "active" ants, since it is not considering those in the nest
|
|
|
|
plt.title('Number of Alive Ants Over Time')
|
|
|
|
plt.grid(True)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
# |%%--%%| <WpQLCA0RuP|UufL3yaROS>
|
|
|
|
|
|
|
|
# Plot the number of sucessful walkers over time
|
|
|
|
plt.plot(model_data.index, model_data['sucessful_walkers'])
|
|
|
|
plt.xlabel('Time')
|
|
|
|
plt.ylabel('Number of Sucessful Walkers')
|
|
|
|
plt.title('Number of Sucessful Walkers Over Time')
|
|
|
|
plt.grid(True)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
# |%%--%%| <UufL3yaROS|mgJWQ0bqG1>
|
|
|
|
|
|
|
|
# Calculate the cumulative sum
|
|
|
|
model_data['cumulative_sucessful_walkers'] = model_data['sucessful_walkers'].cumsum()
|
|
|
|
|
|
|
|
# Plot the cumulative sum of sucessful walkers over time
|
|
|
|
plt.plot(model_data.index, model_data['cumulative_sucessful_walkers'])
|
|
|
|
plt.xlabel('Time')
|
|
|
|
plt.ylabel('Cumulative Sucessful Walkers')
|
|
|
|
plt.title('Cumulative Sucessful Walkers Over Time')
|
|
|
|
plt.grid(True)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
# Values over 100 are to be interpreted as walkers being sucessfull several times since the total max number of ants is 100
|
|
|
|
|
|
|
|
# |%%--%%| <mgJWQ0bqG1|64kmoHYvCD>
|
|
|
|
|
|
|
|
# Connectivity measure
|
2023-06-26 10:27:53 +02:00
|
|
|
def check_food_source_connectivity(food_sources, paths): #food_sources = nodes.is_nest, paths=result from BFS
|
|
|
|
connected_food_sources = set()
|
|
|
|
|
|
|
|
for source in food_sources:
|
|
|
|
if source in paths:
|
|
|
|
connected_food_sources.add(source)
|
|
|
|
|
|
|
|
connectivity = len(connected_food_sources)
|
|
|
|
|
|
|
|
|
|
|
|
return connectivity
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate connectivity through BFS
|
|
|
|
|
|
|
|
current_paths = bfs(self.grid, self.grid.fields["nests"], 0.000001)
|
|
|
|
|
2023-06-26 10:23:19 +02:00
|
|
|
|
|
|
|
# |%%--%%| <64kmoHYvCD|JEzmDy4wuX>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# |%%--%%| <JEzmDy4wuX|U9vmSFZUyD>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-06-26 10:27:53 +02:00
|
|
|
|
2023-06-26 10:23:19 +02:00
|
|
|
|
|
|
|
# |%%--%%| <U9vmSFZUyD|r0xVXEqlAh>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# |%%--%%| <r0xVXEqlAh|6K80EwwmVN>
|